Multivariate spatial models and the multiKrig class

Stephan R. Sain, IMAGe, NCAR

ENAR Spring Meetings

March 15, 2009

Outline

- Overview of multivariate spatial regression models.
- Case study: pedotransfer functions and soil water profiles.
- The multiKrig class
 - Case study: NC temperature and precipitation.

A Spatial Regression Model

A spatial regression model:

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{h} + \epsilon$$
 $(n \times 1) \quad (n \times q)(q \times 1) \quad (n \times 1) \quad (n \times 1)$

where

- E[h] = 0, $Var[h] = \Sigma_h$
- $E[\epsilon] = 0$, $Var[\epsilon] = \sigma^2 I$.
- **h** and ϵ are independent.
- $\mathbf{Y} \sim \mathcal{N}(\mathbf{X}\boldsymbol{\beta}, \mathbf{V})$, $\mathbf{V} = \boldsymbol{\Sigma_h} + \sigma^2 \mathbf{I}$
- $\hat{\beta} = (X'V^{-1}X)^{-1}X'V^{-1}Y$, $\hat{\mathbf{h}} = \Sigma_{\mathbf{h}}V^{-1}(Y X\hat{\beta})$

Multivariate Regression

A multivariate, multiple regression model:

$$Y = X\beta + \epsilon$$

$$(n \times p) = (n \times q)(q \times p) + (n \times p)$$

where

- Each of the n rows of Y represents a p-vector observation.
- Each of the p columns of β represent regression coefficients for each variable.
- The rows of ϵ represents a collection of iid error vectors with zero mean and common covariance matrix, Σ .

Multivariate Regression

MLEs are straightforward to obtain:

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}
(q \times p)
\hat{\boldsymbol{\Sigma}} = \frac{1}{n}\mathbf{Y}'\mathbf{P}\mathbf{Y}
(p \times p)$$

where $P = I - X(X'X)^{-1}X'$.

• Note that the columns of $\widehat{m{\beta}}$ can be obtained through p univariate regressions.

Vec and Kronecker

• The Kronecker product of an $m \times n$ matrix ${\bf A}$ and an $r \times q$ matrix ${\bf B}$ is an $mr \times nq$ matrix:

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} a_{11}\mathbf{B} & a_{12}\mathbf{B} & \cdots & a_{1n}\mathbf{B} \\ a_{21}\mathbf{B} & a_{22}\mathbf{B} & \cdots & a_{2n}\mathbf{B} \\ \vdots & & \ddots & \vdots \\ a_{m1}\mathbf{B} & a_{m2}\mathbf{B} & \cdots & a_{mn}\mathbf{B} \end{bmatrix}$$

Some properties:

$$A \otimes (B + C) = A \otimes B + A \otimes C$$

$$A \otimes (B \otimes C) = (A \otimes B) \otimes C$$

$$(A \otimes B)(C \otimes D) = AC \otimes BD$$

$$(A \otimes B)' = A' \otimes B'$$

$$(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$$

$$|A \otimes B| = |A|^{m}|B|^{n}$$

Vec and Kronecker

The vec-operator stacks the columns of a matrix:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \qquad \text{vec}(\mathbf{A}) = \begin{bmatrix} a_{11} \\ a_{21} \\ a_{12} \\ a_{22} \end{bmatrix}$$

Some properties:

$$vec(AXB) = (B' \otimes A) vec X$$

$$tr(A'B) = vec(A)' vec(B)$$

$$vec(A + B) = vec(A) + vec(B)$$

$$vec(\alpha A) = \alpha vec(A)$$

Multivariate Regression Revisited

• Rewrite the multivariate, multiple regression model:

$$\operatorname{vec}(\mathbf{Y}) = (\mathbf{I}_p \otimes \mathbf{X}) \operatorname{vec}(\boldsymbol{\beta}) + \operatorname{vec}(\boldsymbol{\epsilon}) (np \times 1) + (np \times qp)(qp \times 1) + (np \times 1).$$

- What is $Var[vec \epsilon]$?
- What is the GLS estimator for $vec(\beta)$?

A Multivariate Spatial Model

Extend the multivariate, multiple regression model:

$$\operatorname{vec}(\mathbf{Y}) = (\mathbf{I}_p \otimes \mathbf{X}) \operatorname{vec}(\boldsymbol{\beta}) + \operatorname{vec}(\mathbf{h}) + \operatorname{vec}(\boldsymbol{\epsilon}) (np \times 1) + (np \times qp)(qp \times 1) + (np \times 1) + (np \times 1),$$

where

$$\mathsf{Var}[\mathsf{vec}(\mathbf{h})] \ = \ \Sigma_{\mathbf{h}} = egin{bmatrix} \Sigma_{11} & \Sigma_{12} & \cdots & \Sigma_{1p} \ \Sigma'_{12} & \Sigma_{22} & \cdots & \Sigma_{2p} \ dots & \ddots & dots \ \Sigma'_{12} & \Sigma'_{2p} & \cdots & \Sigma_{pp} \end{bmatrix}$$
 $\mathsf{Var}[\mathsf{vec}(\epsilon)] \ = \ \Sigma \otimes \mathbf{I}_n$

A Multivariate Spatial Model

 One simplification to the spatial covariance matrix is to use a Kronecker form:

$$\Sigma_{\mathsf{h}} = \rho \otimes \mathrm{K}$$

where

- $-\rho$ is a $p \times p$ matrix of scale parameters
- \mathbf{K} is an $n \times n$ spatial covariance.

A Multivariate Spatial Model

Extend the multivariate, multiple regression model:

Now everything follows...

Case Study: Pedotransfer Functions

- Soil characteristics such as composition (clay, silt, sand) are commonly measured and easily obtainable.
- Unfortunately, crop models require water holding characteristics such as the wilting point or lower limit (LL) and the drained upper limit (DUL) which are not so easy to obtain.
 - Often the LL and DUL are a function of depth soil water profile.

Case Study: Pedotransfer Functions

- Pedotransfer functions are commonly used to estimate LL and DUL.
 - Differential equations, regression, nearest neighbors, neural networks, etc.
 - Often specialized by soil type and/or region.
- Develop a new type of pedotransfer function that can capture the entire soil water profile (LL & DUL as a function of depth).
 - Characterize the variation!

Soil Water Profiles

The Big Picture

The CERES Crop Model

- Soil
 - Water holding characteristics
 - Bulk density
 - Etc.
- Weather (20 years)
 - Solar radiation
 - Temperature max/min
 - Precipitation

The Big Picture

- Given a complicated array of inputs, the CERES crop model will give the yields of, for example, maize.
- Deterministic output variation in yields also of interest.
- Goals:
 - Establish a framework to study sources of variation in crop yields.
 - Assess impacts of climate change on crop yields.

Data

- n = 272 measurements on N = 63 soil samples
 - Gijsman et al. (2002)
 - Ratliff et al. (1983), Ritchie et al. (1987)
- Includes measurements of:
 - depth,
 - soil composition and texture
 - * percentages of clay, sand, and silt
 - bulk density, organic matter, and
 - field measured values of LL and DUL.

Data

The soil texture measurements form a composition

$$Z_{\text{clay}} + Z_{\text{silt}} + Z_{\text{sand}} = 1$$

and $Z_{\rm clav}$, $Z_{\rm silt}$, $Z_{\rm sand}$ are the proportions of each soil component.

- Not really three variables...
- To remove the dependence, the additive log-ratio transformation (Aitchinson, 1986) is applied, defining two new variables

$$X_1 = \log\left(\frac{Z_{\text{sand}}}{Z_{\text{clay}}}\right)$$
 $X_2 = \log\left(\frac{Z_{\text{silt}}}{Z_{\text{clay}}}\right)$.

Data - Composition vs LL

Data - Composition vs LL

The model for the multi-objective pedotransfer function for a particular soil is

$$\mathbf{Y}_0 = \mathbf{T}_0 \boldsymbol{\beta} + \mathbf{h}(\mathbf{X}_0) + \epsilon(\mathbf{D}_0)$$

where

$$\mathbf{Y}_0 = \log \left[egin{array}{c} \mathsf{LL}_1 \ dots \ \mathsf{LL}_d \ \Delta_1 \ dots \ \Delta_d \end{array}
ight],$$

and d is the number of measurements (depths) and $\Delta_i = DUL_i - LL_i$.

The model for the multi-objective pedotransfer function for a particular soil is

$$\mathbf{Y}_0 = \mathbf{T}_0 \boldsymbol{\beta} + \mathbf{h}(\mathbf{X}_0) + \epsilon(\mathbf{D}_0)$$

where

$$\mathbf{T}_0 = \begin{bmatrix} \mathbf{1} & \mathbf{X}_0 & \mathbf{Z}_{\mathsf{LL},0} & \mathbf{0} \\ & \mathbf{0} & \mathbf{1} & \mathbf{X}_0 & \mathbf{Z}_{\Delta,0} \end{bmatrix},$$

and

- \mathbf{X}_0 is the transformed soil composition information
- \mathbf{Z}_{LL} and \mathbf{Z}_{Δ} are additional covariates for LL and Δ .
 - * \mathbf{Z}_{LL} includes organic carbon
 - * \mathbf{Z}_{Δ} includes linear and quadratic terms for depth

The model for the multi-objective pedotransfer function for a particular soil is

$$\mathbf{Y}_0 = \mathbf{T}_0 \boldsymbol{\beta} + \mathbf{h}(\mathbf{X}_0) + \epsilon(\mathbf{D}_0)$$

where

- $\mathbf{h}(\mathbf{X}_0)$ is a two-dimensional spatial process that controls the smoothness of the contribution of \mathbf{X}
- $-\epsilon(D_0)$ is an error process that
 - * accounts for the dependence in LL and Δ for a particular depth and
 - * accounts for dependence across depths (one-dimensional spatial process).

Letting

$$\mathbf{Y} = \log \left[\mathsf{LL}_{11} \ \cdots \ \mathsf{LL}_{1d_1} \ \mathsf{LL}_{21} \ \cdots \ \mathsf{LL}_{Nd_N} \ \Delta_{11} \ \cdots \ \Delta_{1d_1} \ \Delta_{21} \ \cdots \ \Delta_{Nd_N} \ \right]',$$
 then \mathbf{Y} is multivariate normal with

$$E[\mathbf{Y}] = \mathbf{T}\boldsymbol{\beta}$$
 $Var[\mathbf{Y}] = \Sigma_{\mathbf{h}} + \Sigma_{\epsilon}$ $\Sigma_{\mathbf{h}} = \begin{bmatrix} \rho_1 & 0 \\ 0 & \rho_2 \end{bmatrix} \otimes \mathbf{K}$ $\Sigma_{\epsilon} = \mathbf{S} \otimes \mathbf{R}.$

with

$$-K_{ij} = k(\mathbf{X}_i, \mathbf{X}_j)$$

- ${f S}$ is the covariance of (LL, Δ) at a fixed depth
- $-\mathbf{R}$ is the (spatial) covariance across depths

Covariance Structures

The covariance function for h is the Matern family

$$C(d) = \sigma^2 \frac{2(\theta d/2)^{\nu} K_{\nu}(\theta d)}{\Gamma(\nu)}$$

where σ^2 is a scale parameter, θ represents the range, ν controls the smoothness.

- $-\sigma^2=1$ (the ρ controls the variances), $\nu=1$, and θ is taken to be approximately the range of the data.
- These choices represent a covariance structure that is consistent with the thin-plate spline estimator (large range, more smoothness).
- Analogous to fixing the kernel and estimating the bandwidth with kernel estimators.

Covariance Structures

The covariance function across depths is exponential

$$C(d) = \sigma^2 \exp\left(-d/\theta\right)$$

where again σ^2 is a scale parameter and θ represents the range.

- The parameters $\sigma^2 = 1$ (the matrix S controls the variances) and θ is estimated from the data.
- The multiple realizations of the soils allow for improved ability to estimate both scale and range parameters.

Covariance Structures

$$\Sigma_{\mathbf{h}} = \left[egin{array}{cc}
ho_1 & 0 \ 0 &
ho_2 \end{array}
ight] \otimes \mathbf{K}$$

$$\Sigma_{\epsilon} = S \otimes R$$

Spatial Smoothing

Write

$$\Sigma_{h} + \Sigma_{\epsilon} = \begin{bmatrix} \rho_{1} & 0 \\ 0 & \rho_{2} \end{bmatrix} \otimes \mathbf{K} + \begin{bmatrix} s_{11} & s_{12} \\ s_{12} & s_{22} \end{bmatrix} \otimes \mathbf{R}$$

$$= s_{11} \begin{bmatrix} \begin{bmatrix} \eta_{1} & 0 \\ 0 & \eta_{2} \end{bmatrix} \otimes \mathbf{K} + \begin{bmatrix} 1 & v_{12} \\ v_{12} & v_{22} \end{bmatrix} \otimes \mathbf{R} \end{bmatrix}$$

$$= s_{11}\Omega$$

- The amount of smoothing is due to the relative contributions of the variance components, i.e. η_1 and η_2 .
- ullet Different degrees of smoothing are allowed for LL and Δ .
- Also, this construction allows for different degrees of variation in the error terms for LL and the Δ variables.

The Estimator

The model suggests an estimator of the form

$$\hat{\mathbf{Y}}_0 = \mathbf{T}_0 \hat{\boldsymbol{\beta}} + \mathbf{K}_0' \hat{\boldsymbol{\delta}},$$

where

$$\mathbf{K}_0' = \left[\begin{array}{cc} \eta_1 & 0 \\ 0 & \eta_2 \end{array} \right] \otimes \mathbf{K}.$$

- To fit the model, we must estimate:
 - η_1 , η_2 and s_{11}
 - $-\beta$, δ
 - ${f R}$ and the other entries of ${f S}$

REML

Take the QR decomposition of T

$$T = [Q_1 \ Q_2] \begin{bmatrix} R \\ 0 \end{bmatrix}.$$

ullet Then $\mathbf{Q}_2'\mathbf{Y}$ has zero mean and covariance matrix given by

$$Q_2'(\Sigma_h + \Sigma_\epsilon)Q_2.$$

- Maximize (numerically) the likelihood based on ${f Q}_2'{f Y}$ which is only a function of the covariance parameters.
- ullet Estimates of $oldsymbol{eta}$ and $oldsymbol{\delta}$ follow directly

$$\widehat{\boldsymbol{\beta}} = (\mathbf{T}'\widehat{\Omega}^{-1}\mathbf{T})^{-1}\mathbf{T}'\widehat{\Omega}^{-1}\mathbf{Y} \qquad \widehat{\boldsymbol{\delta}} = \widehat{\Omega}^{-1}(\mathbf{Y} - \mathbf{T}\widehat{\boldsymbol{\beta}}).$$

An Iterative Approach

- 0. Initialize: compute K and set S = I and R = I.
- 1. Estimate η_1 and η_2 (and s_{11}) via a simplified type of REML (grid search).
- 2. Then

$$\hat{\beta} = (\mathbf{T}'\hat{\Omega}^{-1}\mathbf{T})^{-1}\mathbf{T}^{-1}\hat{\Omega}^{-1}\mathbf{Y} \qquad \hat{\delta} = \hat{\Omega}^{-1}(\mathbf{Y} - \mathbf{T}\hat{\beta}).$$

- 3. Compute residuals and
 - a. Update S (R fixed) closed form solution.
 - b. Update R (S fixed) grid search for θ .
- 4. Repeat items 1-3 until convergence.

An Iterative Approach

- Let $Y = \mu + h + \epsilon$, where h and ϵ are independent Gaussian random variables; the conditional distribution of $Y \mu h$ given h is a zero mean Gaussian with covariance matrix ϵ .
- Thus, the log-likelihood associated with the residuals is given by

$$-\frac{n}{2}|\mathbf{S}| - |\mathbf{R}| - \mathsf{vec}(\mathbf{U})'(\mathbf{S}^{-1} \otimes \mathbf{R}^{-1})\,\mathsf{vec}(\mathbf{U})$$

The quadratic form can be written as

$$\operatorname{tr}(\mathbf{S}^{-1}\sum_{i}\sum_{j}r^{ij}\mathbf{u}_{j}\mathbf{u}_{i}')$$

where r^{ij} is the ijth element of \mathbf{R}^{-1} and \mathbf{u}_i is the bivariate, unstacked residual for the ith observation.

An Iterative Approach

An update for S can be written as

$$\widehat{\mathbf{S}} = \frac{1}{n} \sum_{i} \sum_{j} r^{ij} \mathbf{u}_{j} \mathbf{u}_{i}'$$
$$= \frac{1}{n} \mathbf{U}' \mathbf{R}^{-1} \mathbf{U}$$

where U is the $n \times 2$ matrix of unstacked residuals.

• Again, a simple grid search for θ is used to obtain a new value for ${\bf R}.$

Parameter Estimates

	η_1	η_2	S_{11}	S_{22}	S_{12}	θ
					-0.0222	
Iterative	5.74	2.21	0.0697	0.0445	-0.0217	144.2

Soil Composition and LL

Soil Composition and Δ

Soil Composition and LL/Δ

Organic Carbon and LL

Depth and Δ

Residuals (Within Depth)

Spatial Covariance Across Depth

Prediction Error

- The real benefit of considering our estimator as a spatial process is in the interpretation with respect to the uncertainty of the estimator:
 - The thin-plate spline is a biased estimator with uncorrelated error; not easy to quantify the bias (interpolation error and smoothing error).
 - The spatial process estimator is unbiased, but with correlated error; more complicated error structure but conceptually straightforward to work with.

Prediction Error

The estimator can be written as

$$\hat{\mathbf{Y}}_0 = \mathbf{T}_0 \hat{\boldsymbol{\beta}} + \mathbf{K}_0' \hat{\boldsymbol{\delta}}$$

= $\mathbf{A}_0 \mathbf{Y}$,

where

$$\begin{array}{lll} \mathbf{A}_0 &=& \mathbf{T}_0 (\mathbf{T}' \widehat{\boldsymbol{\Omega}}^{-1} \mathbf{T})^{-1} \mathbf{T}' \widehat{\boldsymbol{\Omega}}^{-1} \\ &+& \mathbf{K}_0 \left(\widehat{\boldsymbol{\Omega}}^{-1} - \widehat{\boldsymbol{\Omega}}^{-1} \mathbf{T} (\mathbf{T}' \widehat{\boldsymbol{\Omega}}^{-1} \mathbf{T})^{-1} \mathbf{T}' \widehat{\boldsymbol{\Omega}}^{-1} \right). \end{array}$$

Prediction Error

Hence,

$$\begin{aligned} \mathsf{Var}(\mathbf{Y}_0 - \widehat{\mathbf{Y}}_0) &= \mathsf{Var}(\mathbf{Y}_0 - \mathbf{A}_0 \mathbf{Y}) \\ &= \mathsf{Var}(\mathbf{Y}_0) + \mathbf{A}_0 \mathsf{Var}(\mathbf{Y}) \mathbf{A}_0' - 2\mathbf{A}_0 \mathsf{Cov}(\mathbf{Y}, \mathbf{Y}_0). \end{aligned}$$

- $Var(Y_0)$ and Var(Y) are computed by plugging in parameters estimates for Σ_h and Σ_ϵ .
- The covariance between \mathbf{Y}_0 and \mathbf{Y} comes from \mathbf{h} and is based on the distance between the transformed composition data.

Generation of Soil Profiles

- Simulations of $\log LL$ and $\log \Delta$ were generated from a multivariate normal with mean $\mathbf{A}_0\mathbf{Y}$ and variance given by the prediction error.
- We use an average soil composition profile computed from the data and assumed to constant across all depths,

$$D = \{5, 15, 30, 45, 60, 90, 120, 150\}.$$

 Represent a draw from the posterior distribution of soil water profiles based on the estimated mean and covariance structure and the uncertainty gleaned from the data.

Generation of Soil Profiles

Application: Crop Models

- Two soils (SIL, S)
 - Given the soil composition, organic carbon, depth, etc., 100 soil profiles (LL, DUL) were generated.
- Twenty years of weather (solar radiation, temperature min/max, and precipitation).
- Yield output generated from the CERES-Maize crop model.

Crop Yields

• SIL (red), S (blue), total annual precipitation (solid line)

Crop Yields

• SIL (red), S (blue), average annual temperature (solid line)

 Create a multivariate spatial regression within the univariate Krig framework:

$$Y = T\beta + h + \epsilon$$

$$\mathbf{Y} = \left[egin{array}{c} \mathbf{Y}_1 \ dots \ \mathbf{Y}_p \end{array}
ight] \qquad \mathbf{T} = \mathbf{I}_p \otimes \mathbf{X} \qquad \mathbf{h} = \left[egin{array}{c} \mathbf{h}_1 \ dots \ \mathbf{h}_p \end{array}
ight] \qquad egin{array}{c} \epsilon = \left[egin{array}{c} \epsilon_1 \ dots \ \epsilon_p \end{array}
ight]$$

 Create a multivariate spatial regression within the univariate Krig framework:

$$Y = T\beta + h + \epsilon$$

$$\begin{aligned} \mathsf{E}[\mathbf{Y}] &= \mathbf{T}\boldsymbol{\beta} \\ \mathsf{Var}[\mathbf{Y}] &= \boldsymbol{\Sigma}_h + \boldsymbol{\Sigma}_{\boldsymbol{\epsilon}} \\ &= \begin{bmatrix} \rho_1 & & \\ & \ddots & \\ & & \rho_p \end{bmatrix} \otimes \mathbf{V}(\boldsymbol{\theta}) + \begin{bmatrix} s_{11} & s_{12} & \cdots & s_{1p} \\ s_{21} & s_{22} & \cdots & s_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ s_{p1} & s_{p2} & \cdots & s_{pp} \end{bmatrix} \otimes \mathbf{I}_n \\ &= \rho_1 \mathbf{R} \otimes \mathbf{V}(\boldsymbol{\theta}) + s_{11} \mathbf{S} \otimes \mathbf{I}_n \\ &= \rho_1 \left(\mathbf{R} \otimes \mathbf{V}(\boldsymbol{\theta}) + \lambda \mathbf{S} \otimes \mathbf{I}_n \right) \end{aligned}$$

 Create a multivariate spatial regression within the univariate Krig framework:

$$\mathbf{Y} = \mathbf{T}eta + \mathbf{h} + \epsilon$$

$$\mathsf{E}[\mathbf{Y}] \ = \ \mathbf{T}eta$$

$$\mathsf{Var}[\mathbf{Y}] \ = \ \Sigma_h + \Sigma_\epsilon$$

$$= \
ho_1 \left(\mathbf{R} \otimes \mathbf{V}(\theta) + \lambda \mathsf{S} \otimes \mathbf{I}_n\right)$$

• Given S, R, and θ , use Krig to estimate β , ρ_1 and λ .

- Issues:
 - Specifying x, Y, and Z
 - Mean function (null.function)
 - Covariance function (cov.function)
 - Error function (wght.function)
- Estimation (S, \mathbf{R} , and θ)

Krig Function

- ullet x is an $n \times q$ matrix of spatial locations
- Y is a *n*-vector of observations observations
- ullet Z is a $n \times q$ matrix of additional covariates

multiKrig Function

- s is an $n \times q$ matrix of spatial locations
- Y is an $n \times p$ matrix of observations
- Z is either:
 - a $n \times q$ matrix of additional covariates, or
 - a list of $n \times q_i$ matrices of additional covariates

multiKrig Function

```
multiKrig <- function(s,Y,Z,</pre>
                 cov.function="multi.cov",cov.args=NULL,
                 wght.function="multi.wght",wght.args=NULL){
                 d \leftarrow ncol(Y)
                 n \leftarrow nrow(Y)
                 Y \leftarrow c(Y)
                 x \leftarrow expand.grid(1:n,1:d)
                 nZ <- kronecker(diag(d),cbind(s,Z))</pre>
                       <- Krig(x=x,Y=c(Y),Z=nZ,method="REML",</pre>
                  obj
                            null.function="multi.null",
                             cov.function=cov.function,cov.args=cov.args,
                             wght.function=wght.function,wght.args=wght.args)
```

```
\mathbf{Y} = \left[ egin{array}{c} \mathbf{Y}_1 \ dots \ \mathbf{Y}_p \end{array} 
ight]
 \bullet Y <- c(Y)
                     function(s,Y,Z,
multiKrig
                     cov.function="multi.cov",cov.args=NULL,
                     wght.function="multi.wght",wght.args=NULL){
                     d \leftarrow ncol(Y)
                     n \leftarrow nrow(Y)
                     Y \leftarrow c(Y)
                     x \leftarrow expand.grid(1:n,1:d)
                     nZ <- kronecker(diag(d),cbind(s,Z))</pre>
                                Krig(x=x,Y=c(Y),Z=nZ,method="REML",
                     obj
                                  null.function="multi.null",
                                  cov.function=cov.function,cov.args=cov.args,
                                  wght.function=wght.function,wght.args=wght.args)
```

```
\mathbf{x} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ \vdots \\ n & 1 \\ 1 & 2 \\ \vdots \\ n & n \end{bmatrix}
 • x <- expand.grid(1:n,1:d)
multiKrig <- function(s,Y,Z,</pre>
                    cov.function="multi.cov",cov.args=NULL,
                     wght.function="multi.wght",wght.args=NULL){
                    d \leftarrow ncol(Y)
                    n \leftarrow nrow(Y)
                    Y \leftarrow c(Y)
                    x <- expand.grid(1:n,1:d)
                    nZ <- kronecker(diag(d),cbind(s,Z))</pre>
                          <- Krig(x=x,Y=c(Y),Z=nZ,method="REML",</pre>
                    obj
                                  null.function="multi.null",
                                  cov.function=cov.function,cov.args=cov.args,
                                  wght.function=wght.function,wght.args=wght.args)
```

```
• nZ <- kronecker(diag(d),cbind(s,Z)) Z = \begin{bmatrix} sZ \\ & \ddots \\ & sZ \end{bmatrix}
multiKrig
                  function(s,Y,Z,
                  cov.function="multi.cov",cov.args=NULL,
                  wght.function="multi.wght",wght.args=NULL){
                  d \leftarrow ncol(Y)
                  n \leftarrow nrow(Y)
                  Y \leftarrow c(Y)
                  x \leftarrow expand.grid(1:n,1:d)
                  nZ <- kronecker(diag(d),cbind(s,Z))</pre>
                  obj
                        <- Krig(x=x,Y=c(Y),Z=nZ,method="REML",</pre>
                              null.function="multi.null",
                              cov.function=cov.function,cov.args=cov.args,
                              wght.function=wght.function,wght.args=wght.args)
```

$$\mathbf{T} = \left[egin{array}{ccccccc} 1 & 0 & 0 & \mathbf{s} \, \mathbf{Z} & 0 & 0 \ 1 & 1 & 0 & 0 & \mathbf{s} \, \mathbf{Z} & 0 \ 1 & 0 & 1 & 0 & 0 & \mathbf{s} \, \mathbf{Z} \end{array}
ight]$$

Covariance Function

- Issue: x is now a matrix of indices.
- Solution: pass the spatial locations as an argument to the covariance function.

```
multiKrig
                 function(s,Y,Z,
                 cov.function="multi.cov",cov.args=NULL,
                 wght.function="multi.wght",wght.args=NULL){
                 cov.args$s <- s
                 obj
                     <- Krig(x=x,Y=c(Y),Z=nZ,method="REML",</pre>
                            null.function="multi.null",
                            cov.function=cov.function,cov.args=cov.args,
                            wght.function=wght.function,wght.args=wght.args)
                 function(x1,x2,marginal=FALSE,C=NA,s,theta,rho,smoothness){
multi.cov
                 ind \leftarrow unique(x1[,2])
                             stationary.cov(s[x1[,1][x1[,2]==1],],
                 temp
                             s[x2[,1][x2[,2]==1],],
                             Covariance="Matern", theta=theta, smoothness=smoothness)
                      (length(ind)>1){
                 if
                            (i in 2:length(ind)){
                      for
                            temp2 \leftarrow rho[i-1]*stationary.cov(s[x1[,1][x1[,2]==i],],
                                         s[x2[,1][x2[,2]==i],],
                                         Covariance="Matern", theta=theta, smoothness=smoothness)
                            d1 <- dim(temp)</pre>
                            d2 \leftarrow dim(temp2)
                                        rbind(cbind(temp,matrix(0,d1[1],d2[2])),
                            temp
                                        cbind(matrix(0,d1[1],d2[2]),temp2))
                 return(temp)
```

Weight Function

Estimation

- Krig will estimate β , ρ_1 and λ .
 - REML
 - GCV (not quite there...)
- How to estimate S, ${\bf R}$, and θ ?

Thanks!

ssain@ucar.edu www.image.ucar.edu/~ssain

• Sain, S.R., Mearns, L., Shrikant, J., and Nychka, D. (2006), "A multivariate spatial model for soil water profiles," *Journal of Agricultural, Biological, and Environmental Statistics*, **11**, 462-480.