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What is “sparse” or a sparse matrix?

According to Wiktionary/Wikipedia:

Sparse: (Adjective)

1. Having widely spaced intervals

2. Not dense; meager

Sparse matrix:

a matrix populated primarily with zeros.



Sparse Matrices

5

R> n <- 15

R> A <- array( runif(n^2), c(n,n)) + diag(n)

R> A[A < 0.75] <- 0
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R> n <- 15

R> A <- array( runif(n^2), c(n,n)) + diag(n)

R> A[A < 0.75] <- 0

R> AtA <- t(A) %*% A
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Why should we use sparse matrices?

1. Savings in storage

nonzeros vs total elements

2. Savings in computing time

0.066s vs 0.003 for 1,000× 1,000 matrix multiplication

To exploit the savings need to exploit the sparsity.

We need a clever storage format and fast algorithms.
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Let A = (aij) ∈ Rn×m and z the number of its nonzero elements.

1. Naive/“traditional”/classic format:

one vector of length n×m and a dimension attribute.

2. Triplet format:

three vectors of length z, (i, j, aij) and a dimension attribute.

3. Compressed sparse row (CSR) format:

eliminate redundant row indices.

4. and about 10 more . . .
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A =


1 0.1 0 0.2 0.3

0.4 2 0 0.5 0
0 0 3 0 0.6

0.7 0.8 0 4 0
0.9 0 0.0 0 5


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A =


1 0.1 0 0.2 0.3

0.4 2 0 0.5 0
0 0 3 0 0.6

0.7 0.8 0 4 0
0.9 0 0.0 0 5



column
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Naive/traditional/classic:

1, .4, 0, .7, .9, .1, 2, 0, .8, 0, 0, 0, 3, 0, .0, .2, .5, 0, 4, 0, .3, 0, .6, 0, 5
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A =


1 0.1 0 0.2 0.3

0.4 2 0 0.5 0
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Triplet:
i : 1 1 1 1 2 2 2 3 3 4 4 4 5 5 5
j : 1 2 4 5 1 2 4 2 3 1 2 4 1 3 5
aij : 1 .1 .2 .3 .4 2 .5 3 .6 .7 .8 4 .9 .0 5
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A =


1 0.1 0 0.2 0.3

0.4 2 0 0.5 0
0 0 3 0 0.6
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i : 1 2 3 4 5
j : 1 2 4 5 1 2 4 2 3 1 2 4 1 3 5
aij : 1 .1 .2 .3 .4 2 .5 3 .6 .7 .8 4 .9 .0 5
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A =


1 0.1 0 0.2 0.3

0.4 2 0 0.5 0
0 0 3 0 0.6

0.7 0.8 0 4 0
0.9 0 0.0 0 5



column
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w
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CSR:
ptr : 1 5 8 10 13 16
j : 1 2 4 5 1 2 4 2 3 1 2 4 1 3 5
aij : 1 .1 .2 .3 .4 2 .5 3 .6 .7 .8 4 .9 .0 5
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1. the nonzero values row by row

2. the (ordered) column indices of nonzero values

3. the position in the previous two vectors corresponding to new

rows, given as pointers

4. the column dimension of the matrix.

CSR:
ptr : 1 5 8 10 13 16
j : 1 2 4 5 1 2 4 2 3 1 2 4 1 3 5
aij : 1 .1 .2 .3 .4 2 .5 3 .6 .7 .8 4 .9 .0 5
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(Dis)Advantages

15

1. Naive format:

No savings in storage and computation (for sparse matrices)

Status quo

2. Triplet format:

Savings in storage and computation for sparse matrices

Loss in storage and computation for full matrices

Intuitive

3. Compressed sparse row (CSR) format:

Apart from intuitive, same as triplet

Faster element access

Many available algorithms

Arbitrary choice for “row” vs “column” format (CSC)
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With a new storage format new “algorithms” are required . . .

Is it worthwhile???
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Setup:

R> timing <- function(expr)

+ as.vector( system.time( for (i in 1:N) expr)[1])

R> N <- 1000 # how many operations

R> n <- 999 # matrix dimension

R> cutoff <- 0.9 # what will be set to 0

R> A <- array( runif(n^2), c(n,n))

R> A[A < cutoff] <- 0

R> S <- somecalltomagicfunctiontogetsparseformat( A)

Compare timing for different operations on A and S.
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R> timing( A + sqrt(A) )

[1] 0.058

R> timing( S + sqrt(S) )

[1] 0.061

R> timing( AtA <- t(A) %*% A )

[1] 0.467

R> timing( StS <- t(S) %*% S )

[1] 4.222
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R> timing( A[1,2] <- .5 )

[1] 0.007

R> timing( S[1,2] <- .5 )

[1] 0.018

R> timing( A[n,n-1] <- .5 )

[1] 0.001

R> timing( S[n,n-1] <- .5 )

[1] 0.012
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R> timing( xA <- solve(AtA, rep(1,n)) )

[1] 1.116

R> timing( xS <- solve(StS, rep(1,n)) )

[1] 1.51

R> timing( RA <- chol(AtA) )

[1] 0.488

R> timing( RS <- chol(StS) )

[1] 1.504
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R> timing( xA <- solve(AtA, rep(1,n)) )

[1] 1.116

R> timing( xS <- solve(StS, rep(1,n)) )

[1] 1.51

R> timing( RA <- chol(AtA) )

[1] 0.488

R> timing( RS <- chol(StS) )

[1] 1.504

Is it really worthwhile? What is going on?
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Matrix S
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Matrix S Matrix StS
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With cutoff 0.99:

R> timing( AtA <- t(A) %*% A )

[1] 0.106

R> timing( StS <- t(S) %*% S )

[1] 0.089

R> timing( RA <- chol(AtA) )

[1] 0.494

R> timing( RS <- chol(StS) )

[1] 0.451
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Matrix StS Matrix chol(StS)

Density of the factor is 41% with fill-in ratio 7.2.
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With cutoff 0.999:

R> timing( AtA <- t(A) %*% A )

[1] 0.059

R> timing( StS <- t(S) %*% S )

[1] 0.002

R> timing( RA <- chol(AtA) )

[1] 0.466

R> timing( RS <- chol(StS) )

[1] 0.007
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Matrix StS Matrix chol(StS)

Density of the factor is .6% with fill-in ratio 2.3.
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Is it worthwhile??? Yes!
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With a new storage format new “algorithms” are required . . .

Is it worthwhile??? Yes!

Especially since

spam: R package for sparse matrix algebra.
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What are sparse matrices?

How to work with sparse matrices?

Sparse positive definite matrices in statistics.

Sparse matrices and fields.
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What is spam?

29

• an R package for sparse matrix algebra

– publicly available from CRAN, 0.15-3

– platform independent and documented

• storage economical and fast

– uses “old Yale sparse format”

– most routines are in Fortran, adapted for spam

– balance between readability and overhead

– flags for “expert” users

• versatile, intuitive and simple

– wrap an as.spam( ) and go

– S4 and S3 syntax

• situated between SparseM and Matrix
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spam defines a S4 class spam containing the vectors:

“entries”, “colindices”, “rowpointers” and ”dimension”.

R> slotNames( "spam")

[1] "entries" "colindices" "rowpointers" "dimension"

R> getSlots( "spam")

entries colindices rowpointers dimension

"numeric" "integer" "integer" "integer"



Representation of Sparse Matrices
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R> A

[,1] [,2] [,3] [,4] [,5]

[1,] 1.0 0.1 0 0.2 0.3

[2,] 0.6 2.0 0 0.5 0.0

[3,] 0.0 0.0 3 0.0 0.6

[4,] 0.7 0.8 0 4.0 0.0

[5,] 0.9 0.0 1 0.0 5.0

Class ’spam’

R> slotNames(A)

[1] "entries" "colindices" "rowpointers" "dimension"

R> A@entries

[1] 1.0 0.1 0.2 0.3 0.6 2.0 0.5 3.0 0.6 0.7 0.8 4.0 0.9 1.0 5.0

R> A@colindices

[1] 1 2 4 5 1 2 4 3 5 1 2 4 1 3 5

R> A@rowpointers

[1] 1 5 8 10 13 16

R> A@dimension

[1] 5 5
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Similar coercion techniques as with matrix:

• spam(...)

• as.spam(...)

Special functions:

• diag.spam(...)

• nearest.dist(...)



Methods for spam
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• Similar behavior as with matrices

plot; dim; determinant; %*%; +; ...

• Slightly enhanced behavior

print; dim<-; chol;

• Specific behavior

Math; Math2; Summary; ...

• New methods

display; ordering;



Create Covariance Matrices
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Covariance matrix:

nearest.dist and applying a covariance function:

R> C <- nearest.dist(x, diag=TRUE, upper=NULL)

R> C@entries <- Wendland( C@entries, dim=2, k=1)



Create Covariance Matrices

34

Covariance matrix:

nearest.dist and applying a covariance function:

R> C <- nearest.dist(x, diag=TRUE, upper=NULL)

R> C@entries <- Wendland( C@entries, dim=2, k=1)

Precision matrix (GMRF):

— regular grids: nearest.dist with different cutoffs

R> diag.spam(n) +

+ (b1-b2) * nearest.dist(x, delta=1, upper=NULL) +

+ b2 * nearest.dist(x, delta=sqrt(2), upper=NULL)

— irregular grids: using incidence list and spam

R> incidence <- list( i=..., j=..., values)

R> C <- spam( incidence, n, n)



Solving Linear Systems

35

A key feature of spam is to solve efficiently linear systems.

To solve the system Ax = b, we

• perform a Cholesky factorisation A = UTU

• solve two triangular systems UTz = b and Ux = z

But we need to “ensure” that U is as sparse as possible!
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35

A key feature of spam is to solve efficiently linear systems.

To solve the system Ax = b, we

• perform a Cholesky factorisation A = UTU

• solve two triangular systems UTz = b and Ux = z

But we need to “ensure” that U is as sparse as possible!

Permute the rows and columns of A: PTAP = UTU.
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Some technical details about a Cholesky decomposition:

[1] Determine permutation and

permute the input matrix A to obtain PTAP

[2] Symbolic factorization:

the sparsity structure of U is constructed

[3] Numeric factorization:

the elements of U are computed
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spam knows Cholesky!

— Several methods to construct permutation matrices P

— update to perform only ‘partial’ Cholesky factors

— Flags for avoiding sanity checks



Cholesky
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Cholesky factor with MMD RCM ordering

Density: 1.5%, fill-in: 4.7 Density: 2.7%, fill-in: 8.1
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Time and memory usage for 101 Cholesky factorizations (solid)

and one factorization and 100 updates (dashed) of a precision

matrix from different sizes L of regular L×L grids with a second

order neighbor structure.

(The precision matrix from L = 200 has L4 = 1.6 ·109 elements).

See also demo( "article-jss").
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Gain of time and memory usage with different options and ar-

guments in the case of a second order neighbor structure of a

regular 50×50 grid and of the US counties. The time and mem-

ory usage for the generic call chol are 6.2 seconds, 174.5 Mbytes

and 15.1 seconds, 416.6 Mbytes, respectively.

Regular grid US counties
Options or arguments time memory time memory
Using the specific call chol.spam 1.001 0.992 0.954 1.004
Option safemode=c(FALSE,FALSE,FALSE) 0.961 1.002 0.988 0.997
Option cholsymmetrycheck=FALSE 0.568 0.524 0.646 0.493
Passing memory=list(nnzR=..., nnzcolindices=...) 0.969 0.979 0.928 0.972
All of the above 0.561 0.508 0.618 0.490
All of the above and passing pivot=... to chol.spam 0.542 0.528 0.572 0.496
All of the above and option cholpivotcheck=FALSE 0.510 0.511 0.557 0.489
Numeric update only using update 0.132 0.070 0.170 0.063
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BTW:

efficient Cholesky factorization ⇐⇒ efficient determinant

calculation:

det(C) = det(UT) det(U) =
n∏

i=1

U2
ii
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For “experts”, flags to speed up the code:

R> powerboost() # in spam_0.15-4

R> noquote( format( spam.options()) )

eps drop printsize

2.220446e-16 FALSE 100

imagesize trivalues cex

10000 FALSE 1200

safemode dopivoting cholsymmetrycheck

TRUE, TRUE, TRUE TRUE TRUE

cholpivotcheck cholupdatesingular cholincreasefactor

TRUE warning 1.25, 1.25

nearestdistincreasefactor nearestdistnnz

1.25 160000, 400



Limits of spam

43

What can spam not do (yet)?

• LU decompositions

• SVD/eigendecompositions

• Non-double elements

• . . .

But, please, comments to rfurrer@mines.edu!
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What are sparse matrices?

How to work with sparse matrices?

Sparse positive definite matrices in statistics.

Sparse matrices and fields.
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Where do large matrices occur?

• Location matrices

• Design matrices
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Where do large matrices occur?

• Location matrices

• Design matrices

• Covariance matrices

• Precision matrices



Sparse Matrices in Statistics
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• Covariance matrices:

Compactly supported covariance functions

Tapering

• Precision matrices:

(Gaussian) Markov random fields

(Tapering???)

We have symmetric positive definite (spd) matrices.
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Precipitation anomaly along 40◦ lat.

Ordinary kriging
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Precipitation anomaly along 40◦ lat.

Nearest neighbor kriging with 8 observations
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Precipitation anomaly along 40◦ lat.

Tapering
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Matern * Wendland
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For an isotropic and stationary process

with Matérn covariance C0(h),

find a taper Cθ(h),

such that kriging with the product C0(h)Cθ(h)

is asymptotically optimal.
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For an isotropic and stationary process

with Matérn covariance C0(h),

find a taper Cθ(h),

such that kriging with the product C0(h)Cθ(h)

is asymptotically optimal.

MSE(x∗, C0Cθ)

MSE(x∗, C0)
→ 1

%(x∗, C0Cθ)

MSE(x∗, C0)
→ γ

%(x∗, C) = C(0)− c∗TC−1c∗



Misspecified Covariances
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In a series of (Annals) papers, Stein gives asymptotic results for

misspecified covariances.

Under appropriate conditions, tapering is a form of misspecifica-

tion.

The taper has to be

• as differentiable at the origin as the original covariance

• more differentiable throughout the domain than at the origin



Tapering
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Tapering is an (asymptotically and computationally) efficient tech-

nique to create sparse covariance matrices.

Taper range can be justified by computing resources. However,

20–30 locations within the taper range is often sufficient.

“Classical” tapers are:

• spherical: Cθ(h) =
(
1− |h|

θ

)2

+

(
1 + |h|

θ

)

• Wendland-type: Cθ(h) =
(
1− |h|

θ

)`+k

+
· polynomial in |h|

θ of deg k



Positive Definite Matrices
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A (large) covariance (often) appears in:

• drawing from a multivariate normal distribution

• calculating/maximizing the (log-)likelihood

• linear/quadratic discrimination analysis

• PCA, EOF, . . .

But all boils down to solving a linear system and

possibly calculating the determinant . . .

‘Sparse PCA’ is sparse in a different sense . . .
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What are sparse matrices?

How to work with sparse matrices?

Sparse positive definite matrices in statistics.

Sparse matrices and fields.
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• fields is not bound to a specific sparse matrix format

• All heavy lifting is done in mKrig or Krig.engine.fixed

• For a specific sparse format, requires the methods:

chol, backsolve, forwardsolve and diag

as well as elementary matrix operations

need to exist

• If available uses operators to handle diagonal matrices quickly

 The covariance matrix has to stem from particular class.
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• fields is not bound to a specific sparse matrix format

• All heavy lifting is done in mKrig or Krig.engine.fixed

• For a specific sparse format, requires the methods:

chol, backsolve, forwardsolve and diag

as well as elementary matrix operations

need to exist

• If available uses operators to handle diagonal matrices quickly

 The covariance matrix has to stem from particular class.

fields uses spam as default package!



Example mKrig

55

With appropriate covariance function:

R> x <- USprecip[ precipsubset, 1:2] # locations

R> Y <- USprecip[ precipsubset, 4] # anomaly

R> out <- mKrig(x,Y, m=1, cov.function="wendland.cov",theta=1.5)

R> out.p <- predict.surface( out, nx=220, ny=120)

R> surface(out.p, type=’I’)

R> US(add=T)

R> points(x,pch=’.’)



Example mKrig
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Example Krig
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R> out <- Krig( x,Y, m=1, cov.function="wendland.cov",theta=1.5,

+ lambda=0)

R> out.q <- predict.surface( out, nx=220, ny=120)

R> sum( ( out.q$z-out.p$z)^2, na.rm=T)

[1] 1.616783e-20

Krig/predict is slower (here 2.1/3.7 vs 10.4/3.9 seconds).



Wendland family
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wendland.cov (based on Wendland) produces a spam matrix.

All matrix functions are appropriately overloaded . . .
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To create sparse covariance matrices based on other covariance

functions, use wendland.cov as skeleton.
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Tapering can be performed with stationary.taper.cov.

Arguments are (selection):

Covariance = "Exponential"

Taper = "Wendland"

Taper.args = NULL : arguments for the taper function

Dist.args = NULL : arguments passed to nearest.dist

... : arguments passed to covariance function

All arguments can also be passed from mKrig/Krig



Tapering
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Compare the predicted surfaces without and with tapering:

R> out1 <- mKrig( xr,Yr, m=1, theta=1.5) )

R> out1.p <- predict.surface( out1, nx=220, ny=120) )

R> out2 <- mKrig( xr,Yr, m=1, theta=1.5,

+ cov.function="stationary.taper.cov",

+ Taper.args = list(k=0, theta=3)))

R> out2.p <- predict.surface( out2, nx=220, ny=120))

(timing yields 4/22 and 1/9 seconds)



Tapering
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Exponential covariance and with tapering



Tapering
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Exponential covariance and with tapering



Asides . . .
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The following arguments of mKrig/Krig are linked to spam:

Dist.args : arguments passed to nearest.dist

chol.args : arguments passed to chol

Use their help for fine tuning.

predict.se.Krig, predict.surface.se.Krig are very inefficient

because nrow(x) equations need to be solved.



How Big is Big?
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Upper limit to create a large matrix is the minimum of:

(1) available memory (machine and OS/shell dependent)

Error: ’cannot allocate vector of size’

(2) addressing capacity (231 − 1)

Error: ’cannot allocate vector of length’

However, R is based on passing by value, calls create local copies

(often 3–4 times the space of the object is used).

R> help("Memory-limits")



And Beyond?
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Parallelization:

nws, snow, Rmpi, . . .

Memory “Outsourcing”:

Matrices are not (entirely) kept in memory:

ff, filehash, biglm, . . .

(S+ has the library BufferedMatrix)
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