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Summary

e [ wo different points of view
— Ensemble- or time-average
— Scale-decomposition
e Net alignment of the eddy flux of PV with appropriate mean

or large-scale gradient of PV required but found to be WEAK
— Backscatter is almost as important as Damping

e With scale decomposition, strong correlation between the
eddy-flux and a nonlinear combination of filtered gradients
— Absent in Ensemble- or time-average based decomposition
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eynolds’ Decomposition
volution of mean-enstrophy:
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Reynolds’ Decomposition

Mean-Eddy-Enstrophy
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Components of the subgrid pv flux

o= (W) —wg +(wgs) + (usq); + (usgs);
Leonard stress Cross-stress Reynolds stress
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leonard Stress Cross-stress Reynolds stress

(Galilean Invariant Decomposition)
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Time-mean circulation (left) and potential vorticity (right) in
non-dimensional units. Top row is top layer. Bottom row is
bottom layer



Energy Density

Spectra of total energy (solid line), barotropic energy (dashed

line) and baroclinic kinetic energy (dot-dashed line) Note that

1) Only the total energy is inviscidly conserved. 2) All spectra
fall-off steeply at the scale of filtering.
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Distribution of angle between eddy-flux of pv and time-mean pv
gradient using Reynolds decomposition in the top layer (left)
and bottom layer (right). The required alignment of the
eddy-flux down the gradient of mean pv is verified in the mean
angle in the above plots being slightly greater than =« /2.



0z

o TV (@) =rFq+Dqd+1

T, =-%X -Vg=-uq Vg

e Steady forcing; statistical stationarity.

Since / D'd <o, /77>o
D D

e Locally advection matters, particularly in basin config.
So u/¢’ «x —Vqg is not good locally.

e But only divergent component affects g evolution. However,
no UNIQUE decomposition of u'q’



8q+v (ug)=F+D, V.-u=0.

Reynolds’ Decomposition Scale Decomposition
u=u+u u=—uy;+u g =+ us
u=1u, u = u; #Fu, ug#0
Evolution of Mean-PV Evolution of Large-scale PV

o]
0

oq

MV . @) =F+D-V-%
t ot

—I—V (ulql)—Fl—I—Dl V.o

!/

S =ug-ug=uq. o = (uq); — wgq



Marshall and Shutts, 1981

e If mean circulation contours do not deviate much from the
mean pv contours, then a two way balance is possible

e Mean advection of perturbation enstrophy could be balanced
by a rotational pv flux aligned along contours of perturbation
potential enstrophy

e Rest of eddy-pv flux could be downgradient (after neglecting
triple correlations)
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Distribution of the dot product between a divergent component

of eddy-pv flux and the mean-gradient. In effect a component

of the eddy-flux that circulates around contours of perturbation

potential enstrophy has been removed to obtain the 'divergent’
component of eddy-pv flux.
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Distribution of angle between sub-filter pv flux and large-scale
pv gradient. The distributions still peak at «/2, i.e., the eddy
flux is most often perpendicular to the large-scale gradient.
However, the net downgradient alignment is more pronounced
than in the case of the classical Reynolds decomposition.



Components of the subgrid pv flux

o= (W) —wg +(wgs) + (usq); + (usgs);
Leonard stress Cross-stress Reynolds stress
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Taylor series expansion of u;(x’) about u(x) etc... in Leonard
stress at first order:
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Distribution of angle between sub-filter pv flux and Vu; - Vq;.
The peaking of the angle at O implies close alignment of the
two vectors. That this angle is a random variable is also
evident. Hence a putative eddy parameterization based on
Vu; - Vq; would ideally have a stochastic aspect to it.
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Distribution of angle between eddy-flux of pv (u/q’) and
Vu - Vg. Much unlike in the scale-decomposition approach, in
the Reynolds decomposition approach, this alignment is
particularly insightful.



wed [l amd

Pl adslls

[ n] (K 1] s 1] il u
el o

Left: Instantaneous potential vorticity. Center: Spatial
distribution of angle between sub-filter pv flux and Vgq;. Right:
Angle between sub-filter pv flux and Vu; - Vq;. An almost
equitable distribution of green-blue-blacks and red-yellows in
the center plot indicates poor alignment between the eddy-pv
flux and the large-scale gradient. On the other hand, a
predominance of blue-blacks in the plot on the right indicates
strong alignment of the eddy flux with the nonlinear
combination of large-scale gradients considered.
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Left: Instantaneous potential vorticity. Center: Spatial
distribution of angle between Reynolds eddy-flux of pv and Vg.
Right: Angle between Reynolds eddy-flux of pv and Vu-: Vg.An

almost equitable distribution of green-blue-blacks and

red-yellows in the center and right plots indicates poor
alignment of the eddy-pv flux with either of the two objects
considered.



Less Inertial
*Poor Separation

*Weaker NRG

Weak eddying across e

this front does not aid
in transporting high

More Inertial

«Better Separation
«Stronger NRG

eddies into NRG
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With a 5x reduced resolution, separation incorrect (less inertial)
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Gulf Stream Separation
Barotropic Streamfunction(Flat-bottom)
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Conclusion

e Reynolds Average Based Modeling vs. LES

— Intution for developing models of turbulence in ocean
flows largely based on Reynolds Averaging

— With affordable higher-resolutions,scale-decomposition/LES
ideas are increasingly relevant

— LES differs from Reynolds Average based models in
modeling only unresolved scales

— However, OGCMs (mean equations) are such that scale-
decomposition motivated models can be easily implemented.
Requires appropriate (re-)interpretation of model variables.



e Orientation of eddy-pv flux

— Fwd. Cascade of Enstrophy requires net downgradient
component

— Backscatter is almost as important as Damping

— Local Correlation with Gradient Very Poor

— With scale-decomposition, good correlation with Vu;: Vg
— Doesn't hold for Reynolds decomposition

e Scalar vs. Tensor eddy-viscosity,
nonlinear gradient model, numerics





