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Summary

• Two different points of view

– Ensemble- or time-average

– Scale-decomposition

• Net alignment of the eddy flux of PV with appropriate mean

or large-scale gradient of PV required but found to be WEAK

– Backscatter is almost as important as Damping

• With scale decomposition, strong correlation between the

eddy-flux and a nonlinear combination of filtered gradients

– Absent in Ensemble- or time-average based decomposition



∂q

∂t
+ ∇ · (uq) = F + D, ∇ · u = 0.

Reynolds’ Decomposition

u = u + u
′

u = u, u
′ = 0

Evolution of Mean-PV

∂q

∂t
+ ∇ · (u q) = F + D −∇ · Σ

Σ = uq − u q = u
′q′.

Scale Decomposition

u = u>l + u<l = ul + us.

ull 6= ul, usl 6= 0

Evolution of Large-scale PV

∂ql

∂t
+ ∇ · (ulql) = Fl + Dl −∇ · σ

σ = (uq)l − ulql



Reynolds’ Decomposition

Evolution of mean-enstrophy:

Z = q2/2

∂Z

∂t
+ ∇ ·

(

uZ + qΣ
)

= Fq + Dq − TZ,

TZ = −Σ · ∇q = −u
′q′ · ∇q

Scale Decomposition

Large-scale enstrophy:

Zl = q2l /2

∂Zl

∂t
+ ∇ · (ulZl + qlσ)

= Flql + Dlql − ΠZl
,

ΠZl
= −σ · ∇ql

= − ((uq)l − ulql) · ∇ql



Reynolds’ Decomposition

Mean-Eddy-Enstrophy

z = q′2/2

∂z

∂t
+ ∇ · (uz)

= F ′q′ + D′q′

+ TZ

Scale Decomposition

Small-Scale-Enstrophy

zl = (q2 − q2l )/2

∂zl

∂t
+ ∇ · (uZ − ulZl − qlσ)

= Fq − Flql + Dq − Dlql

+ ΠZl



Components of the subgrid pv flux

σ = (ulql)l − ulql︸ ︷︷ ︸

Leonard stress

+(ulqs)l + (usql)l︸ ︷︷ ︸

Cross-stress

+ (usqs)l︸ ︷︷ ︸

Reynolds stress

σ = (ulql)l − ullqll︸ ︷︷ ︸

Leonard Stress

+(ulqs)l + (usql)l − ullqsl − uslqll︸ ︷︷ ︸

Cross-stress

+ (usqs)l − uslqsl︸ ︷︷ ︸

Reynolds stress

(Galilean Invariant Decomposition)
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Time-mean circulation (left) and potential vorticity (right) in

non-dimensional units. Top row is top layer. Bottom row is

bottom layer
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Spectra of total energy (solid line), barotropic energy (dashed

line) and baroclinic kinetic energy (dot-dashed line) Note that

1) Only the total energy is inviscidly conserved. 2) All spectra

fall-off steeply at the scale of filtering.
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Distribution of angle between eddy-flux of pv and time-mean pv

gradient using Reynolds decomposition in the top layer (left)

and bottom layer (right). The required alignment of the

eddy-flux down the gradient of mean pv is verified in the mean

angle in the above plots being slightly greater than π/2.



∂z

∂t
+ ∇ · (uz) = F ′q′ + D′q′ + TZ

TZ = −Σ · ∇q = −u
′q′ · ∇q

• Steady forcing; statistical stationarity.

Since

∫

D
D′q′ < 0,

∫

D
TZ > 0

• Locally advection matters, particularly in basin config.

So u
′q′ ∝ −∇q is not good locally.

• But only divergent component affects q evolution. However,

no UNIQUE decomposition of u
′q′



∂q

∂t
+ ∇ · (uq) = F + D, ∇ · u = 0.

Reynolds’ Decomposition

u = u + u
′

u = u, u
′ = 0

Evolution of Mean-PV

∂q

∂t
+ ∇ · (u q) = F + D −∇ · Σ

Σ = uq − u q = u
′q′.

Scale Decomposition

u = u>l + u<l = ul + us.

ull 6= ul, usl 6= 0

Evolution of Large-scale PV

∂ql

∂t
+ ∇ · (ulql) = Fl + Dl −∇ · σ

σ = (uq)l − ulql



Marshall and Shutts, 1981

• If mean circulation contours do not deviate much from the

mean pv contours, then a two way balance is possible

• Mean advection of perturbation enstrophy could be balanced

by a rotational pv flux aligned along contours of perturbation

potential enstrophy

• Rest of eddy-pv flux could be downgradient (after neglecting

triple correlations)

∇ · (u z) =
(

u
′q′
)

rot
· ∇q

D′q′ =
(

u
′q′
)

div
· ∇q,
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Distribution of the dot product between a divergent component

of eddy-pv flux and the mean-gradient. In effect a component

of the eddy-flux that circulates around contours of perturbation

potential enstrophy has been removed to obtain the ’divergent’

component of eddy-pv flux.
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Distribution of angle between sub-filter pv flux and large-scale

pv gradient. The distributions still peak at π/2, i.e., the eddy

flux is most often perpendicular to the large-scale gradient.

However, the net downgradient alignment is more pronounced

than in the case of the classical Reynolds decomposition.



Components of the subgrid pv flux

σ = (ulql)l − ulql︸ ︷︷ ︸

Leonard stress

+(ulqs)l + (usql)l︸ ︷︷ ︸

Cross-stress

+ (usqs)l︸ ︷︷ ︸

Reynolds stress

σ = (ulql)l − ullqll︸ ︷︷ ︸

Leonard Stress

+(ulqs)l + (usql)l − ullqsl − uslqll︸ ︷︷ ︸

Cross-stress

+ (usqs)l − uslqsl︸ ︷︷ ︸

Reynolds stress

(Galilean Invariant Decomposition)



Taylor series expansion of ul(x
′) about u(x) etc... in Leonard

stress at first order:

(ulql)l − ullqll =

=

∫

dx′ G(x−x
′)

(

ul(x) + (x′ − x)j
∂uli

∂xj
(x)

)(

ql(x) + (x′ − x)j
∂ql

∂xj
(x)

)

−

∫

dx′ G(x − x
′)

(

ul(x) + (x′ − x)j
∂uli

∂xj
(x)

)

∗

∫

dx′ G(x − x
′)

(

ql(x) + (x′ − x)j
∂ql

∂xj
(x)

)

= C2l
∂uli

∂xj

∂ql

∂xj
= C2l ∇ul · ∇ql
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Distribution of angle between sub-filter pv flux and ∇ul · ∇ql.

The peaking of the angle at 0 implies close alignment of the

two vectors. That this angle is a random variable is also

evident. Hence a putative eddy parameterization based on

∇ul · ∇ql would ideally have a stochastic aspect to it.
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Distribution of angle between eddy-flux of pv (u′q′) and

∇u · ∇q. Much unlike in the scale-decomposition approach, in

the Reynolds decomposition approach, this alignment is

particularly insightful.



Left: Instantaneous potential vorticity. Center: Spatial
distribution of angle between sub-filter pv flux and ∇ql. Right:

Angle between sub-filter pv flux and ∇ul · ∇ql. An almost
equitable distribution of green-blue-blacks and red-yellows in
the center plot indicates poor alignment between the eddy-pv

flux and the large-scale gradient. On the other hand, a
predominance of blue-blacks in the plot on the right indicates

strong alignment of the eddy flux with the nonlinear
combination of large-scale gradients considered.



Left: Instantaneous potential vorticity. Center: Spatial

distribution of angle between Reynolds eddy-flux of pv and ∇q.

Right: Angle between Reynolds eddy-flux of pv and ∇u · ∇q.An

almost equitable distribution of green-blue-blacks and

red-yellows in the center and right plots indicates poor

alignment of the eddy-pv flux with either of the two objects

considered.







Gulf Stream Separation

Barotropic Streamfunction(Flat-bottom)



Conclusion

• Reynolds Average Based Modeling vs. LES

– Intution for developing models of turbulence in ocean

flows largely based on Reynolds Averaging

– With affordable higher-resolutions,scale-decomposition/LES

ideas are increasingly relevant

– LES differs from Reynolds Average based models in

modeling only unresolved scales

– However, OGCMs (mean equations) are such that scale-

decomposition motivated models can be easily implemented.

Requires appropriate (re-)interpretation of model variables.



• Orientation of eddy-pv flux

– Fwd. Cascade of Enstrophy requires net downgradient

component

– Backscatter is almost as important as Damping

– Local Correlation with Gradient Very Poor

– With scale-decomposition, good correlation with ∇ul ·∇ql

– Doesn’t hold for Reynolds decomposition

• Scalar vs. Tensor eddy-viscosity,

nonlinear gradient model, numerics




