Reduced Equations for Langmuir Turbulence

Greg Chini

Mechanical Engineering Department, University of New Hampshire

Collaborators

Keith Julien

Department of Applied Mathematics, University of Colorado, Boulder

Edgar Knobloch

Physics Department, University of California, Berkeley

February 27th, 2008

Langmuir Circulation (LC) Windrows

–A. Szeri (1996)

-G. Marmorino -McWilliams *et al.* (1997)

Related Work – Theory and Simulation

Quasi-Laminar Simulations of 2D Craik–Leibovich (CL) Equations

- Li & Garrett (J. Mar. Res. 1993, JPO 1995, 1997)
- Gnanadesikan & Weller (JPO 1995)

Weakly Nonlinear 2D and 3D Investigations

- 2D: Leibovich, Lele & Moroz (JFM 1989)
- 3D: Bhaskaran & Leibovich (*Phys. Fluids*, 2002)

Small Wavenumber Finite-Amplitude 3D Investigations

• Cox & Leibovich (*Phys. Fluids*, 1997)

Simulations of Full 3D Craik–Leibovich (CL) Equations

- DNS: Tandon & Leibovich (JGR, 1995)
- LES: Skyllingstad & Denbo (JGR, 1995), McWilliams et al. (JFM, 1997), Tejada-Martinez & Grosch (JFM, 2007)

Goals and Motivation

Objective Obtain reduced PDE model capable of describing coarse-grained, strongly anisotropic but otherwise turbulent LC dynamics.

Motivation

- Secondary stability analysis by Tandon & Leibovich (JPO, 1995)
- Reduced PDEs for rapidly-rotating thermal convection by Julien, Knobloch & Werne (*Theoret. Comput. Fluid Dyn.*, 1998), Sprague *et al.* (*JFM*, 2006)

Purpose

- Reveal dominant 3D physics.
- Enable simpler (e.g. upper-bound) analysis.
- Less expensive numerical simulations for multi-scale process studies.
- Incorporation into formal multiscale numerical scheme.

Isotropically Scaled CL Equations

• Consider full 3D, isotropically-scaled CL equations, where two parameters $R_* \equiv u_* H/\nu_e$, $La_t = \sqrt{u_*/u_{s_0}}$ replace single parameter $La \equiv La_t R_*^{-3/2}$:

$$\frac{\mathsf{D}\mathbf{u}}{\mathsf{D}t} = -\nabla p + \frac{1}{La_t^2}(\mathbf{U}_s \times \boldsymbol{\omega}) + \frac{1}{R_*}\nabla^2 \mathbf{u}$$

• Two turbulence regimes:

Shear flow turbulence regime: $La_t \gg 1$ with $R_* \gg 1$. Langmuir turbulence regime: $La_t = O(0.1)$ with $La \ll 1$.

• Motivates consideration of formal limit $La_t \rightarrow 0$ with R_* fixed or $R_* \rightarrow \infty$:

2D dynamics: $\Omega \neq 0$, $\partial_x \Omega = 0$, *u*-fluctuations $\ll (v, w)$ -fluctuations.

Anisotropic Velocity Scalings

Employ anisotropic velocity scales to capture nonlinear, spatially anisotropic reduced dynamics:

$$L_x = H, \quad (L_y, L_z) = H, \quad \mathcal{T} = H/\mathcal{V}$$
$$\mathcal{U} = u_* R_*, \quad (\mathcal{V}, \mathcal{W}) = \sqrt{\mathcal{U} u_{s_0}}, \quad \mathcal{P} = \rho \mathcal{V}^2$$

- In essence, perturbing off of strictly 2D [$\partial(\cdot)/\partial x = 0$] problem.
- Identify $\varepsilon \equiv U/W = R_*^{1/2} La_t$ (cf. Tejada-Martinez & Grosch 2007).

Rescaled CL Equations in Strong Wave–Forcing Limit

$$\partial_{t}u + \varepsilon u \partial_{x}u + (\mathbf{v}_{\perp} \cdot \nabla_{\perp}) u = -\varepsilon^{-1} \partial_{x}P + \varepsilon R_{*}^{-2} \left[\partial_{x}^{2} + \nabla_{\perp}^{2}\right] u$$

$$\partial_{t}\mathbf{v}_{\perp} + \varepsilon u \partial_{x}\mathbf{v}_{\perp} + (\mathbf{v}_{\perp} \cdot \nabla_{\perp}) \mathbf{v}_{\perp} = -\nabla_{\perp}P + U_{s} \left(\nabla_{\perp}u - \varepsilon^{-1} \partial_{x}\mathbf{v}_{\perp}\right)$$

$$+ \varepsilon R_{*}^{-2} \left[\partial_{x}^{2} + \nabla_{\perp}^{2}\right] \mathbf{v}_{\perp}$$

$$\varepsilon \partial_{x}u + \nabla_{\perp} \cdot \mathbf{v}_{\perp} = 0$$

- Wind stress BC: $\partial_z u = 1$ along z = 0, -1.
- *x*-invariance at leading-order: $\partial_x P = \partial_x v = \partial_x w = 0$ and $\nabla_{\perp} \cdot \mathbf{v}_{\perp} = 0$.

Multiple Scale Expansion

- 1. Limit process: $\varepsilon \to 0$, i.e. $La_t \to 0$, $R_* = La_t^{-2\alpha/(1-\alpha)}$, $0 \le \alpha < 1/2$.
- 2. Introduce slow x scale: $X \equiv \varepsilon x$ so that $\partial_x \to \partial_x + \varepsilon \partial_X$.
- 3. Expand fields:

$$u(x, y, z, t) = u_0(x, X, y, z, t) + \varepsilon u_1(x, X, y, z, t) + \dots$$

$$\mathbf{v}_{\perp}(x, y, z, t) = \mathbf{v}_{0\perp}(X, y, z, t) + \varepsilon \mathbf{v}_{1\perp}(x, X, y, z, t) + \dots$$

$$P(x, y, z, t) = P_0(X, y, z, t) + \varepsilon P_1(x, X, y, z, t) + \dots$$

- 4. Substitute into PDEs, collect terms of like order and **average** over fast x.
- 5. Obtain closed set of equations for $\bar{u}_0 \equiv U(X, y, z, t)$, $\mathbf{v}_{0\perp} \equiv \mathbf{V}_{\perp}(X, y, z, t)$ and $P_0 \equiv \Pi(X, y, z, t)$.

Reduced PDEs

• Define:

$$D_t^{\perp}(\cdot) \equiv \partial_t(\cdot) + (\mathbf{V}_{\perp} \cdot \nabla_{\perp})(\cdot) \equiv \partial_t(\cdot) + J[(\cdot), \psi],$$

where $J[(\cdot), \psi] = \partial_z \psi \partial_y(\cdot) - \partial_y \psi \partial_z(\cdot).$

• Reduced dynamics governed by:

$$D_t^{\perp}U = -\partial_X \Pi + La \nabla_{\perp}^2 U$$

$$D_t^{\perp}\Omega + U_s(z)\partial_X \Omega = U'_s(z)(\partial_X V - \partial_y U) + La \nabla_{\perp}^2 \Omega$$

$$\nabla_{\perp}^2 \Pi = 2J[\partial_y \psi, \partial_z \psi] + \nabla_{\perp} \cdot (U_s(z) \nabla_{\perp} U) + U'_s(z)\partial_X (\partial_y \psi)$$

$$\nabla_{\perp}^2 \psi = -\Omega, \quad \mathbf{V}_{\perp} \equiv \nabla_{\perp} \times \psi \hat{\imath}$$

- Fast x averaged BCs along z = 0, -1: $\partial_z U = 1, \ \Omega = 0, \ \psi = 0.$
- Advection by U and stretching of Ω are subdominant processes.

Strongly Nonlinear, Strictly 2D Convective States

• Steady-state U(y, z) profiles show excellent qualitative agreement with x-t averaged LES profiles of Tejada–Martinez & Grosch (2007).

Matched Asymptotic Analysis

- Asymptotic analysis predicts core vorticity $|\overline{\Omega}| \sim 1 \quad \forall \ k \text{ as } La \to 0.$
- With $\psi(y, z)$ known, boundary/interior layer problems linearize and entire solution can be approximated asymptotically.

† G. P. Chini. Strongly nonlinear Langmuir circulation and Rayleigh–Bénard convection. Submitted to the *Journal of Fluid Mechanics*.

Reduced PDEs — Linear and Secondary Stability Results

† G. Chini, K. Julien, E. Knobloch. An asymptotically reduced model of Langmuir turbulence. Submitted to *Geophysical and Astrophysical Fluid Dynamics*.

Conclusions

- Derived reduced PDEs for anisotropic Langmuir turbulence in strong waveforcing limit that capture dominant linear and secondary instabilities.
- Ongoing investigations:
 - time-dependent simulations of reduced system.
 - incorporation of stratification (interactions b/w LC and internal waves) and rotation.
 - exploration of scalings yielding complementary reduced PDE models of Langmuir turbulence.
 - application of methodology to other shear-flow instability phenomena.

† GPC gratefully acknowledges support from NSF CAREER award 0348981 (administered by the Physical Oceanography Program).

Future Directions — Submesoscale–Mesoscale Interactions

- Investigate multiscale interactions b/w mixed-layer LC and submeso- and mesoscale eddies.
- Develop modulation (or homogenization) theory for asymptotic stronglynonlinear 2D LC solutions.
- Construction of a hierarchy (algebraic, ODE, reduced PDE) of LC verticalflux parameterizations for use in OGCMs.