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Atmospheric vortices contain significant multiscale
nonlinear interactions
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Spectral method: some cons
(thanks to M. Taylor)

Spectral methods are excellent, except:
• Nonlinear terms must be computed in physical

space.
• An fFt costs                  , but other geometries

require transforms costing           for each
coordinate.

• Transforms require all-to-all communication that
reduces parallel-computation scaling.

• Global Fourier analysis obscures physical-
location information.
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    The red curve
approximates a
smooth function
as a weighted sum of
4 blue “tent”
functions          .  One
can state exactly :

Finite-element method, roughly (wikipedia image)
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• Nonlinear terms are straightforward.
• Complicated geometries and bcs can be treated.
• Efficient parallelization.
• Generally, error goes like h1 or h2, where h is the

size of the largest element.
• Recovered spectral information tends to be poor.

FEM pros & cons
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   Where FEM uses a basis
             that is piecewise

linear and interpolating,
SEM uses
that is piecewise degree-p
polynomial and
interpolates p-1 additional
interior points per
direction:

SEM, roughly
(e.g., Fournier et al. MWR 2004)
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   The Gauss-node distribution enables the
representation to be as accurate as a Fourier-
Legendre expansion in each direction.

For example, the error         in solving
is bounded as
assuming                   similar to spectral method!

SEM, roughly … (e.g., Fournier et al. MWR 2004)
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• C0-continuous and C1-discontinuous implies
that standard Nd-point uniform cubature for the
Fourier coefficient uq potentially commits an
O(N  

–d – 1) error.

• This error can be completely eliminated starting
from known (Legendre polynomial)q.

Fourier analysis on spectral elements
(Fournier J. Comp. Sci. 2006)
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Analysis of sinqx using 1D spectral elements

E.g., at degree p=2 or 8, need K=1024q or 8q elements
(Kp points) to compute Fourier coefficient to 12 digits.
Fournier 2006.
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GASpAR simulation code: Rosenberg,
Fournier, Fischer & Pouquet 2006.K = 162, 322, 642

Initial condition: Matthaeus, Stribling,
Martinez, Oughton & Montgomery 1991
(dealiased pseudospectral, 5122 d.o.f.).

p = 7

Decaying incompressible Navier-Stokes:
scaling E(0,|k|), random phase i.c.ζ(0,x1,x2)

E(0,|k|)
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Here’s 1 of
36 basis
functions
φj:

• Patera 1984,
• Karniadakis &

Sherwin 1999,
• Deville et al. 2002

2D Spectral
elements
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Adaptive
nonconforming
refinement for a
nonlinear radial
“N-wave”.  Each
element has
degree p=4.

Rosenberg, Fournier, Fischer &
Pouquet 2006.

2D Burgers eq., Re=200
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Fourier analysis exact for SEM: Fournier 2006.Reynolds nu. Re = Γ /ν = 2×104

energy spectrum E(t,|k|) vorticity ζ(t,x1,x2)

GASpAR simulation code: Rosenberg, Fournier, Fischer & Pouquet 2006;
F, R & P GAFD submitted 2008.Viscosity ν , 1-vortex circulation Γ
Initial condition: Schneider, Kevlahan & Farge 1997.Degree p = 7, element count K varies.

Decaying incompressible Navier-Stokes: 3 vortices

Note, |((d/dt)O(Δt 2)E)/2νZ+1| < 8×10-3 ∀t

Animation at http://www.image.ucar.edu/~fournier/projects/nug3vort/
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GASpAR simulation code: Rosenberg, Fournier, Fischer & Pouquet 2006.Reynolds nu. Re = Γ /ν = 2×104

Initial condition: Schneider, Kevlahan & Farge 1997.Degree p = 7, element count K varies.
Decaying incompressible Navier-Stokes: 3-vortex slice comparison

ζ(t=5,x1=0.42) cf.
Kevlahan &
Farge 1997

ζ(t=10,x2=0.5),
cf.
Schneider, K
& F 1997
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Multiresolution spectral elements
Fournier, Beylkin & Cheruvu 2005; Fournier 2008

New kind of MRA:
define u ̃k,ℓ to
contain the extra
info. filtered out
by merging
element Ωk,ℓ  with
its 2d—1 “sibling”
elements.

Ω0,2 Ω4,3 Ω5,3

Ω8,3

Ω10,3

24,4 25,4

26,4 27,4

28,4 29,4

30,4 31,4

36,4 37,4

38,4 39,4

44,4 45,4

46,4 47,4

48,4

φk,ℓ = ∑i  Hiφ 2dk+i,ℓ+1
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Multiresolution analysis based on continuous SEM: Fournier 2006.ℓ = 6 multiresolution levels

GASpAR simulation code: Rosenberg, Fournier, Fischer & Pouquet 2006.Re = Γ / ν  = 5.07×103

Initial condition: Schneider, Kevlahan & Farge 1997.p = 16, K = 322
Decaying incompressible Navier-Stokes: 3 vortices (cont.)

S
harp scale filtering

M
R

A scale filtering
                       All scales

Animation at http://www.image.ucar.edu/~fournier/projects/nugmasse/
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GASpAR simulation code: Rosenberg, Fournier, Fischer & Pouquet 2006.Re = Urms(0)L /ν = 4000

Initial condition: Matthaeus, Stribling, Martinez, Oughton & Montgomery 1991.p = 7, K = 162

Decaying incompressible Navier-Stokes: scaling-E, random phase i.c.

t = 2×10-1

t = 8.3×10-1 t = 3.3 t = 13

t = 0 t = 4×10-2
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GASpAR simulation code: Rosenberg, Fournier, Fischer & Pouquet 2006.Re = Urms(0)L /ν = 4000

Initial condition: Matthaeus, Stribling, Martinez, Oughton & Montgomery 1991.p = 7, K = 162

Decaying incompressible Navier-Stokes: scaling-E, random phase i.c.
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1. Spectral-element method (SEM) reproduces some
traditional pseudo-spectral-method (PSM) simulations,
with same rate of accuracy increase with computational
d.o.f. but adaptively, with greater geometric flexibility
and better distributed c.p.u. efficiency.

2. Element-local polynomial spaces enable high-accuracy
Fourier analysis.

3. Rigorous multiresolution analysis can be constructed
w.r.t. element refinement (Fournier in preparation 2008).

4. (Not included) some local conservation laws can be
enforced (Taylor & Fournier in preparation 2008).

Summary


