Spatially localized analysis of dynamically adaptive spectralelement simulations

<u>Aimé Fournier</u>* Duane Rosenberg & Annick Pouquet NCAR

Institute for Mathematics Applied to Geosciences Turbulence Numerics Team *2007 visitor at U Reading Meteorology

Atmospheric vortices contain significant multiscale nonlinear interactions

Figure 1. Left: space-shuttle STS-66 photograph of cloud formations due to von Karmen vortices near Heard Island, 1994/11 (NASA Science Photo Library E120/457). Right: same, chromatically adjusted to suppress some non-vortical features, and annotated to show a scale $\langle \approx 20$ km, (anti-)cyclonic vortex centers + (-) and approximate hyperbolic points (x).

Spectral method: some cons

(thanks to M. Taylor)

Spectral methods are excellent, except:

- Nonlinear terms must be computed in physical space.
- An fFt costs $O[M \log M]$, but other geometries require transforms costing $O[M^2]$ for each coordinate.
- Transforms require all-to-all communication that reduces parallel-computation scaling.
- <u>Global</u> Fourier analysis obscures physicallocation information.

Finite-element method, roughly (wikipedia image)

The red curve approximates a smooth function $\psi[x]$ as a weighted sum of 4 blue "tent" functions $\phi_k[x]$. One can state *exactly* :

$$\psi[x] = \sum_{k=1}^{4} (\psi[x_k]\phi_k[x] + \frac{1}{2}(x - x_k)(x - x_{k\pm 1})\psi''[\xi_k^{\pm}[x]]).$$

FEM pros & cons

- Nonlinear terms are straightforward.
- Complicated geometries and bcs can be treated.
- Efficient parallelization.
- Generally, error goes like h¹ or h², where h is the size of the largest element.
- Recovered <u>spectral</u> information tends to be poor.

SEM, roughly (e.g., Fournier et al. MWR 2004) Where FEM uses a basis $\phi_k[\vec{x}]$ that is piecewise linear and interpolating, SEM uses $\phi_{\vec{a},k}[\vec{x}]$ that is piecewise degree-*p* polynomial and interpolates p-1 additional interior points per direction: $\phi_{\vec{i},k}[\vec{x}_{\vec{j},l}] = \delta_{\vec{i},\vec{j}}\delta_{k,l}$.

SEM, roughly ... (e.g., Fournier et al. MWR 2004)

The Gauss-node distribution enables the $\phi_{j,k}[x]$ representation to be as accurate as a Fourier-Legendre expansion in each direction.

For example, the error $\tilde{\psi}[x]$ in solving $\psi'' + \omega^2 \psi = f$ is bounded as $\|(d/dx + i\omega)\tilde{\psi}\| \le C_s h^{\min[p,s]} p^{-s} \|\psi_{true}^{(s+1)}\|$ assuming $\|f^{(s-1)}\| < \infty$, similar to spectral method!

Fourier analysis on spectral elements (Fournier J. Comp. Sci. 2006)

- \mathbb{C}^{0} -continuous and \mathbb{C}^{1} -discontinuous implies that standard N^{d} -point uniform cubature for the Fourier coefficient u_{q} potentially commits an $O(N^{-d-1})$ error.
- This error can be completely eliminated starting from known (Legendre polynomial)_q.

Analysis of sinqx using 1D spectral elements

Fig. 1. Relative r.m.s. error in (3) for $u(x) = \sin x$, (a) vs. $K = 2\pi/h$ for $p \in \{1, ..., 16\}$ (dark to light), and (b) vs. p for $\log_2 K \in \{0, ..., 10\}$ (dark to light).

E.g., at degree p=2 or 8, need K=1024q or 8q elements (*Kp* points) to compute Fourier coefficient to 12 digits. Fournier 2006.

Turbulent theory and modeling, IMAGe Theme for 2008, 2008/2/29

NCAR

Turbulent theory and modeling, IMAGe Theme for 2008, 2008/2/29

NCAR

2D Burgers eq., Re=200

Adaptive *nonconforming* refinement for a nonlinear radial "N-wave". Each element has degree p=4.

Rosenberg, Fournier, Fischer & Pouquet 2006.

Multiresolution spectral elements

Fournier, Beylkin & Cheruvu 2005; Fournier 2008

New kind of MRA: define $\tilde{\boldsymbol{u}}_{k,\ell}$ to contain the extra info. filtered out by merging element $\Omega_{k,\ell}$ with its 2^d—1 "sibling" elements.

$$\boldsymbol{\phi}_{k,\ell} = \sum_{i} \mathbf{H}_{i} \boldsymbol{\phi}_{2^{d}k+i,\ell+\ell}$$

Animation at http://www.image.ucar.edu/~fournier/projects/nugmasse/

Decaying incompressible Navier-Stokes: scaling-*E*, random phase i.c.

NCAR

Decaying incompressible Navier-Stokes: scaling-*E*, random phase i.c.

 $p = 7, K = 16^2$ Re = $U_{\rm rms}(0)L/V = 4000$

Initial condition: Matthaeus, Stribling, Martinez, Oughton & Montgomery 1991.

GASpAR simulation code: Rosenberg, Fournier, Fischer & Pouquet 2006.

Summary

- Spectral-element method (SEM) reproduces some traditional pseudo-spectral-method (PSM) simulations, with same rate of accuracy increase with computational d.o.f. but adaptively, with greater geometric flexibility and better distributed c.p.u. efficiency.
- 2. Element-local polynomial spaces enable high-accuracy Fourier analysis.
- 3. Rigorous multiresolution analysis can be constructed w.r.t. element refinement (Fournier *in preparation* 2008).
- 4. (Not included) some local conservation laws can be enforced (Taylor & Fournier *in preparation* 2008).

