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Polygonal Eyewalls

DMSP image of Hurricane Isabel, 12 Sept. 2003.

® First satellite imagery of hurricanes revealed a surprise !

B Fascinating dynamical feature: hurricane eyewalls are often
polygonal in appearance (square, pentagonal and hexagonal).
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B Schubert et al. (1999) suggested that polygonal eyewalls form
from perturbations that can interpreted as two, discrete,
phase-locked, Vortex-Rossby Waves (VRWS) that live on the
Inner and outer vorticity gradients of the eyewall.

® They formulated a discontinuous, 2D, three-region vortex model
(piece-wise constant vorticity) with dispersion relation

1 1 Qq 1/2

v = 5( 1 +vg) £ 5 (11 —1)? + &&a(r1/r2)

for the unstable mode with non-interacting VRW frequencies
{v1, 15} and vorticity jumps {&1,&2} at {r1,r2}.

B |nstability occurs for azimuthal wave-number I > 3; this barotropic
Instability may cause spinup and maintenance of eye vorticity,
thereby increasing hurricane maximum intensity.
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The elusive [ = 2 instability

® Nolan & Montgomery (2002) computed fully 3D, nonhydrostatic
modes for hurricane-like vortices.

® They found a quasi-2D, [ = 2 instability that disappears as eye
vorticity vanishes (hurricane category 7).

B Two concentric sets of perturbations in eyewall — VRWSs!
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Terwey and Montgomery (2002) note the unsatisfactory absence of
wavenumber-2 instabilities in normal-mode models with small
hurricane eye vorticity:

It is strange to think that an instability as
common in continuous models and observed

phenomenon ...would require that the core’s
vorticity must be negative.
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B QOur new numerical routine produces unstable, I = 2, modes that
appear to be distinct from Nolan & Montgomery (2002)’s quasi-2D
instability:

N=16, Ro=38, Fr=3 N=16, Ro=38, Fr=3

y
-0.2 0.0 I0.2 04 0.6

® Note the two inner consecutive rings of vertical vorticity.
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B Example with larger stratification.
N=63, Ro=40, Fr=7.5

® Note the two rings which dominate the vertical vorticity.
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® Can we interpret this instability as two, discrete, phase-locked,
Vortex-Rossby Waves (VRWS)?

® How is this instability different from the “Category 1” instability
discovered by Nolan and Montgomery (2002)?

B A 2D wavenumber-2 instability is not predicted by simple,
discontinuous, three-region vortex models [e.g. Schubert et al.,
1999]. What is the salient 3D feature that allows instability?

® Can we capture this class of instability in a 3D extension of
Schubert et al. (1999)’s discontinuous, three-region vortex model?

® What the implications of this class of instability for hurricane
intensification.
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For a “hurricane-like” base-state with

Azimuthal Angular Velocity = Q(r)
Vertical Vorticity = Z(r)

and constant stratification, IV, we solve the 3D, linearized, Boussinesq
equations in cylindrical coordinates:

O + Q0gur — (2Q + flug = —0,m
Orug + Q0gug + (Z + flu, = —%ﬂ'
O, + Q0pu, = b—0.7
O¢b + Q0pb + uzN? = 0
%(% (ru,.) + %8@%9 +0,u, = 0

for perturbations, ¢(r, 0, z,t) = A(r) exp [i(l10 + mz — vt)].
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B Increasing hurricane strength (category) is roughly analogous
with decreasing eye vorticity.
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We use a new numerical approach.
® Solve for eigenvalues using standard packages (LAPACK) but. ..
B We solve the equation for pressure Laplacian analytically.
B Pressure is written as a convolution over Bessel functions,
Ki(mr), I;(mr)
Advantages:

® Pressure is computed using Nth-order stencil; NO numerical
derivatives.

B Divergent boundary conditions (Bessel functions) are eliminated
analytically.

Disadvantages:
® Numerics is “finicky”.

+ ® Remove spurious eigenvalues using (imperfect) convergence test.
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B |nstability produces strong azimuthal vorticity in the eyewall
associated with vertical convection that peaks at » = 1.

N=16,R0=29, Fr=3.3

r
| W Figure shows Ry € {0,50}, N € {16,128}, m € {0,40}.
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A

Question: Is this 3D structure consistent with VRW theory and

Schubert et al. (1999)?

Approach: Extend three region vortex model by adding

skewed-Gaussian eyewall vertical velocity.

H—

Z
o Q
o | u,
“
O —

- Los Alamos

NNNNN

VRW Instability — p. 13



® Following Schubert et al. (1999) we use vertical vorticity (¢,) Eqn:

(v —1Q)(, + ig—fur +(Z+1)mu, =0

Note the Vortex Stretching!

® We solve the u,.-equation in each region:

o 0 o,

—r—(ru,) — *u, = —i—(r*mu,) + ilr

or Or or

(Z+4+1)
v —IQ(r)

mu,

® |nner (r < r1) and outer (r > r3) we have u, = 0:

Uy ~ rl_l

[—1

r<nrTr OK

Up ~ T r > 7o Punt.

B Thisisa TOY MODEL!
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A

® Usual jump conditions at {ry, 72} for vorticity jumps {&1, &2}

(v = 121)Aug|,, = & ur(r1)
(V—ZQQ)AUQ‘TQ = 1&u.(r2)

B New BC: satisfy nonhydrostatic vertical momentum balance at ..
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First Model:

B Given
Z +1
%r%(rur) — Py, = —i%(fljmuz) + olr 1/(— ;(2)muz
replace
. (Z+1) . (Z2+1)
zlry 100 mu, — zlry — ZQ*(T*)muz

B Resulting Model: 4th order (quartic) expression for v.

B Advantage: Provides analytic insight.
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using a new expression for the discriminant [Yang, 1999].

—— Ry=10 .
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Critical Froude number is [Gaussian u, of width o]:

Stability boundary of our 4th-order expression for v can be analyzed
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Effect of vertical vorticity stretching:
ilr (Z S 1) mu., — ilr (Z 13 1) mu
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B Given linearized vertical vorticity equation

(v —1Q)(, + ig—fur +(Z+1)mu, =0

Narrow rings of vorticity occur where

Material frequency = Re(v) — I2(r) =0

® This resonance is a fixed point in reference frame of the base

AAAAAAAAAAAAAAAAAA

state.
Conclusion: Narrow rings of enhanced vorticity
seen in full numerical model are not VRWSs, but
Instability can be interpreted as two, discrete,
phase-locked VRWs.
P
aLo?sAIamos

VRW Instability — p. 20



Comparison of Analytic and Numerical Models

Prediction from analytic model:

® Moving radial outward: first VRW, then disturbance due to
material frequency resonance, then peak in {u., (.} associated
with stretching, then second VRW.
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Comparison of Analytic and Numerical Models
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® We have addressed the “missing” wavenumber-2, VRW
Instability, absent from 3-region Schubert et al. model, and In
Nolan and Montgomery (2002)’s analysis at large category.

B Using new numerical approach, we find a class of fundamentally
3D, | = 2 instability associated with:
B |ntense vertical convection (vortical hot towers) in eyewall.

B Rings of enhance vertical vorticity at resonance radius where
material frequency Is zero.

B Froude numbers greater 4.
B Richard numbers greater than 0.1.

® Developed a new 3D, non-hydrostatic 3-region model:
B Ath-order eigenvalue equation that is analytically tractable.

B Contend is simplest analytic model which shows archetypal
features of [ = 2 Instability, in agreement with numerics.

A

3
» Los Alamos

VRW Instability — p. 23



B Study fully nonlinear evolution of this [ = 2 VRW instability.
B Assess role of instabllity in either

B Transporting vorticity into the eye and the axisymmetrization
process — intensification.

B Disruption of eyewall processes — eyewall renewal cycles and
de-intensification.

New Hurricane-Lightning Project:

B Understand roll of VRW instabilities, and vortical hot towers in the
generation of hurricane eyewall lightning.

B Experiments with cloud-resolving model and microphysics.

Other stability work in Cylindrical Geometry:

® Normal mode analysis and instability of land ice-sheets.

|, = Contacts: Nicole Jeffery, njeffery@lanl.gov, and Beth Wingate.
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Velocity and basestate tendency for VS = ilr M,
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mu,.

(Z+1)
v —IQ(r)

Velocity and basestate tendency for VS = ilr
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Vorticity

Vorticity and basestate tendency for VS = ilr
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Model Comparison
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