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Polygonal Eyewalls

DMSP image of Hurricane Isabel, 12 Sept. 2003.

First satellite imagery of hurricanes revealed a surprise !

Fascinating dynamical feature: hurricane eyewalls are often
polygonal in appearance (square, pentagonal and hexagonal).
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Why do polygonal eyewalls form?

Schubert et al. (1999) suggested that polygonal eyewalls form
from perturbations that can interpreted as two, discrete,
phase-locked, Vortex-Rossby Waves (VRWs) that live on the
inner and outer vorticity gradients of the eyewall.

They formulated a discontinuous, 2D, three-region vortex model
(piece-wise constant vorticity) with dispersion relation

ν =
1

2
(ν1 + ν2) ±

1

2

[

(ν1 − ν2)
2 + ξ1ξ2(r1/r2)

2l
]1/2

for the unstable mode with non-interacting VRW frequencies
{ν1, ν2} and vorticity jumps {ξ1, ξ2} at {r1, r2}.

Instability occurs for azimuthal wave-number l ≥ 3; this barotropic
instability may cause spinup and maintenance of eye vorticity,
thereby increasing hurricane maximum intensity.
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The elusive l = 2 instability

Nolan & Montgomery (2002) computed fully 3D, nonhydrostatic
modes for hurricane-like vortices.

They found a quasi-2D , l = 2 instability that disappears as eye
vorticity vanishes (hurricane category ↑).

Two concentric sets of perturbations in eyewall → VRWs!

PV Pressure
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Despite this. . .

Terwey and Montgomery (2002) note the unsatisfactory absence of
wavenumber-2 instabilities in normal-mode models with small
hurricane eye vorticity:

It is strange to think that an instability as
common in continuous models and observed
phenomenon . . . would require that the core’s

vorticity must be negative.
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An new l = 2 instability?

Our new numerical routine produces unstable, l = 2, modes that
appear to be distinct from Nolan & Montgomery (2002)’s quasi-2D
instability:
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Note the two inner consecutive rings of vertical vorticity.
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An new l = 2 instability?

Example with larger stratification.
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Note the two rings which dominate the vertical vorticity.
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Questions

Can we interpret this instability as two, discrete, phase-locked,
Vortex-Rossby Waves (VRWs)?

How is this instability different from the “Category 1” instability
discovered by Nolan and Montgomery (2002)?

A 2D wavenumber-2 instability is not predicted by simple,
discontinuous, three-region vortex models [e.g. Schubert et al.,
1999]. What is the salient 3D feature that allows instability?

Can we capture this class of instability in a 3D extension of
Schubert et al. (1999)’s discontinuous, three-region vortex model?

What the implications of this class of instability for hurricane
intensification.
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Equations and Numerics

For a “hurricane-like” base-state with

Azimuthal Angular Velocity = Ω(r)

Vertical Vorticity = Z(r)

and constant stratification, N , we solve the 3D, linearized, Boussinesq
equations in cylindrical coordinates:

∂tur + Ω∂θur − (2Ω + f)uθ = −∂rπ

∂tuθ + Ω∂θuθ + (Z + f)ur = −
∂θ

r
π

∂tuz + Ω∂θuz = b − ∂zπ

∂tb + Ω∂θb + uzN
2 = 0

1

r
∂r (rur) +

1

r
∂θuθ + ∂zuz = 0

for perturbations, φ(r, θ, z, t) = A(r) exp [i(lθ + mz − νt)].
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“Hurricane-Like” Base States

Increasing hurricane strength (category) is roughly analogous
with decreasing eye vorticity.
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Numerics

We use a new numerical approach.

Solve for eigenvalues using standard packages (LAPACK) but. . .

We solve the equation for pressure Laplacian analytically.

Pressure is written as a convolution over Bessel functions,

Kl(mr), Il(mr)
Advantages:

Pressure is computed using Nth-order stencil; NO numerical
derivatives.

Divergent boundary conditions (Bessel functions) are eliminated
analytically.

Disadvantages:

Numerics is “finicky”.

Remove spurious eigenvalues using (imperfect) convergence test.
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Hot Vortical Towers!

Instability produces strong azimuthal vorticity in the eyewall
associated with vertical convection that peaks at r = 1.
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Figure shows R0 ∈ {0, 50}, N ∈ {16, 128}, m ∈ {0, 40}.
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Is this a VRW?

Question: Is this 3D structure consistent with VRW theory and
Schubert et al. (1999)?
Approach: Extend three region vortex model by adding
skewed-Gaussian eyewall vertical velocity.
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New Model

Following Schubert et al. (1999) we use vertical vorticity (ζz) Eqn:

(ν − lΩ)ζz + i
∂Z

∂r
ur + (Z + 1)muz = 0

Note the Vortex Stretching!

We solve the ur-equation in each region:

∂

∂r
r

∂

∂r
(rur) − l2ur = −i

∂

∂r
(r2muz) + ilr

(Z + 1)

ν − lΩ(r)
muz

Inner (r < r1) and outer (r > r2) we have uz = 0:

ur ∼ rl−1 r < r1 OK.
ur ∼ r−l−1 r > r2 Punt.

This is a TOY MODEL!
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Boundary Conditions

Usual jump conditions at {r1, r2} for vorticity jumps {ξ1, ξ2}:

(ν − lΩ1)∆uθ|r1
= iξ1ur(r1)

(ν − lΩ2)∆uθ|r2
= iξ2ur(r2)

New BC: satisfy nonhydrostatic vertical momentum balance at r∗.
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Results: 1st Model

First Model:

Given

∂

∂r
r

∂

∂r
(rur) − l2ur = −i

∂

∂r
(r2muz) + ilr

(Z + 1)

ν − lΩ(r)
muz

replace

ilr
(Z + 1)

ν − lΩ(r)
muz → ilr

(Z + 1)

ν − lΩ∗(r∗)
muz

Resulting Model: 4th order (quartic) expression for ν.

Advantage: Provides analytic insight.
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Instability Boundaries
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Analytic Behavior

Stability boundary of our 4th-order expression for ν can be analyzed
using a new expression for the discriminant [Yang, 1999].
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Origin of Vorticity Rings

Effect of vertical vorticity stretching:

ilr
(Z + 1)

ν − lΩ(r)
muz → ilr

(Z + 1)

ν − lΩ∗(r∗)
muz
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Vertical vorticity stretching

Given linearized vertical vorticity equation

(ν − lΩ)ζz + i
∂Z

∂r
ur + (Z + 1)muz = 0

Narrow rings of vorticity occur where

Material frequency = Re(ν) − lΩ(r) = 0

This resonance is a fixed point in reference frame of the base
state.

Conclusion: Narrow rings of enhanced vorticity
seen in full numerical model are not VRWs, but
instability can be interpreted as two, discrete,

phase-locked VRWs.
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Comparison of Analytic and Numerical Models

Prediction from analytic model:

Moving radial outward: first VRW, then disturbance due to
material frequency resonance, then peak in {uz, ζz} associated
with stretching, then second VRW.
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Comparison of Analytic and Numerical Models
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Conclusions

We have addressed the “missing” wavenumber-2, VRW
instability, absent from 3-region Schubert et al. model, and in
Nolan and Montgomery (2002)’s analysis at large category.

Using new numerical approach, we find a class of fundamentally
3D, l = 2 instability associated with:

Intense vertical convection (vortical hot towers) in eyewall.

Rings of enhance vertical vorticity at resonance radius where
material frequency is zero.

Froude numbers greater 4.

Richard numbers greater than 0.1.

Developed a new 3D, non-hydrostatic 3-region model:

4th-order eigenvalue equation that is analytically tractable.

Contend is simplest analytic model which shows archetypal
features of l = 2 instability, in agreement with numerics.
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Current/Future Work

Study fully nonlinear evolution of this l = 2 VRW instability.

Assess role of instability in either

Transporting vorticity into the eye and the axisymmetrization
process → intensification.

Disruption of eyewall processes → eyewall renewal cycles and
de-intensification.

New Hurricane-Lightning Project:

Understand roll of VRW instabilities, and vortical hot towers in the
generation of hurricane eyewall lightning.

Experiments with cloud-resolving model and microphysics.

Other stability work in Cylindrical Geometry:

Normal mode analysis and instability of land ice-sheets.

Contacts: Nicole Jeffery, njeffery@lanl.gov, and Beth Wingate.
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Model Comparison

Velocity and basestate tendency for VS = ilr
(Z + 1)

ν − lΩ∗(r∗)
muz.
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Model Comparison

Velocity and basestate tendency for VS = ilr
(Z + 1)

ν − lΩ(r)
muz.
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Model Comparison

Vorticity and basestate tendency for VS = ilr
(Z + 1)

ν − lΩ∗(r∗)
muz.
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Model Comparison

Vorticity and basestate tendency for VS = ilr
(Z + 1)

ν − lΩ(r)
muz.
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