Towards a new interpretation of upper-ocean dynamics using Surface Quasi-Geostrophy

Guillaume Lapeyre and Patrice Klein

LMD-ENS LPO, IFREMER

Brest

Collaboration : J. Isern-Fontanet, B. Chapron, X. Capet

Upper oceanic layers at mesoscale

Classical paradigm

- QG turbulence driven by interior potential vorticity
 - Kinetic Energy in k^{-3} at mesoscales (Charney, 1971)
- The altimeter sees 1st baroclinic mode (Stammer, 1997)
 - Transfer of surface (baroclinic) KE towards small scales

Upper oceanic layers at mesoscale

Classical paradigm

- QG turbulence driven by interior potential vorticity
 - Kinetic Energy in k^{-3} at mesoscales (Charney, 1971)
- The altimeter sees 1st baroclinic mode (Stammer, 1997)
 - Transfer of surface (baroclinic) KE towards small scales

In contradiction with recent results for ocean surface

- Kinetic energy spectra in $k^{-5/3}$ (Le Traon et al. 2008)
- Transfer of surface Kinetic Energy towards large scales (Scott et Wang 2005)

\Rightarrow need to better understand surface dynamics

PE simulations at very high resolution

Stratified turbulence with baroclinic unstable front Earth Simulator (Japan) (Klein et al. 2008)

Surface ocean dynamics

Towards a new interpretation

- Dynamics driven by surface density and not by interior potential vorticity
- The altimeter sees a surface-intensified mode (Lapeyre 2007, submitted)
- Surface Quasi-Geostrophic model
 - KE spectra in $k^{-5/3}$ (Held et al. 1995)
 - Same spectra for surface KE and density
 - Inverse transfer of surface KE (Capet et al. 2008)
 - \Rightarrow consistent with surface observations

Potential vorticity inversion

QG PV inversion \equiv invert an **elliptic equation** :

with surface boundary condition

$$f_0 \left. \frac{\partial \psi}{\partial z} \right|_{z=0} = b|_{z=0} \qquad b = -\frac{g\rho}{\rho_0}$$

Important remark:

 $b|_{z=0}$ plays the same role as interior PV!

Surface vs interior decomposition

total inversion = inversion (PV) + inversion ($b|_{z=0}$)

vertical distribution of $\widehat{\psi}$ for an horizontal mode $\mathbf{k} = 2\pi/80 \ \mathrm{km}^{-1}$ using data from realistic simulation (POP model)

 $\Rightarrow \textbf{Effective SQG solution} \text{ with constant } N^2$ may represent upper layer dynamics

Surface QG model

Solution with constant N^2 using surface density

$$\widehat{\psi}(\boldsymbol{k}, z) = \frac{1}{N} \frac{\widehat{\mathbf{b}}_{\mathbf{s}}(\boldsymbol{k})}{|\mathbf{k}|} \exp\left(\frac{\mathbf{N}}{\mathbf{f}_{\mathbf{0}}}|\mathbf{k}| \mathbf{z}\right)$$

link between SSH and SST in Fourier space:

 ${\bf SSH}~\propto~k^{-1}~{\bf SST}$

- same spectra for surface KE and SST
- Reconstruction of upper-layer dynamics using surface density only

 \Rightarrow Test of the SQG solution in different models

surface density

relative vorticity (s^{-1})

Reconstruction of vorticity field at the surface

(Earth Simulator simulations)

SQG prediction

Reconstruction relatively accurate down to 500 m

surface relative vorticity

SQG reconstruction of relative vorticity

using SST as a proxy for surface density

Conclusions

Importance of the surface-intensified mode

- driven by surface density
- Surface Quasi-Geostrophic dynamics
- Reconstruction of 3D dynamics from SST
 - accurate for the upper 500 meters
- Coupling surface/interior dynamics?

References:

Lapeyre et Klein, J.P.O. 2006; Isern-Fontanet et al., G.R.L 2006 Lapeyre et al. J.P.O. 2006; Klein et al. 2008, J.P.O. in press Capet et al. J. Fluid Mech. 2008, in press.

Mathematical equivalence

$$\begin{split} \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial}{\partial z} \left(\frac{f_0^2}{N^2} \frac{\partial \psi}{\partial z} \right) &= PV \\ f_0 \left. \frac{\partial \psi}{\partial z} \right|_{z=0} &= b|_{z=0} \\ \text{and} \\ \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial}{\partial z} \left(\frac{f_0^2}{N^2} \frac{\partial \psi}{\partial z} \right) &= PV + f_0 \left. b \right|_{z=0} \left. \frac{dirac(z)}{dirac(z)} \right. \\ f_0 \left. \frac{\partial \psi}{\partial z} \right|_{z=0} &= 0 \end{split}$$

(Bretherton 1966)

Coupling between interior and surface inversions

total inversion = inversion (PV) + inversion ($b|_{z=0}$)

Coupling between interior and surface inversions

total inversion = inversion (PV) + inversion ($b|_{z=0}$)

For baroclinically unstable flows

$$PV'(x, y, z) = \frac{\partial_y \overline{PV}}{\partial_y \overline{b_s}} b'(x, y, z = 0) = G(z)b_s(x, y)$$

 \Rightarrow inversion (PV) $\approx \gamma(\mathbf{z})$ inversion ($b|_{z=0}$)

total solution \approx "effective SQG" solution (N = cst)

Correlation between PV and surface density

Decomposing into surface and baroclinic modes

surface vorticity

surface mode

Decomposing into surface and interior dynamics

ratio rms vorticity interior modes vs surface mode $rms(\zeta_{mod}/\zeta_{sqg})$ 1.4 1.3 1.2 1.1 0.9 0.8 0.7 зо<u>ц</u> _80 -60 -40 -20 Ο

correlation SQG reconstruction and observed vorticity

Surface QG model

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial}{\partial z} \left(\frac{f_0^2}{N^2} \frac{\partial \psi}{\partial z} \right) = 0 \quad \text{with} \quad f_0 \left. \frac{\partial \psi}{\partial z} \right|_{z=0} = b|_{z=0}$$
$$\left(\frac{\partial}{\partial t} + \boldsymbol{u}|_{z=0} \cdot \nabla \right) b|_{z=0} = 0$$

Solution with constant N^2

$$\widehat{\psi}(\boldsymbol{x}, z) = \frac{1}{N} \frac{\widehat{\mathbf{b}}_{\mathbf{s}}(\boldsymbol{k})}{|\mathbf{k}|} \exp\left(\frac{N}{f_0}|k|z\right)$$
$$\widehat{b}_s(\boldsymbol{x}, z) = \widehat{b}_s(\boldsymbol{k}) \exp\left(\frac{N}{f_0}|k|z\right)$$

Vertical velocities

$$w = -\frac{1}{N^2} \frac{Db}{Dt} = -\frac{1}{N^2} \left(\frac{\partial b}{\partial t} + \boldsymbol{u} \cdot \nabla_H b \right)$$
$$\widehat{w} = \frac{1}{N^2} \left(-J(\widehat{\psi_s, b_s}) \exp\left(\frac{N}{f_0} |k| z\right) + J(\widehat{\psi, b}) \right)$$

- 8

vertical velocities (m/day)

SQG prediction

at z = -220 m

Idealized simulation (Klein et al. 2008)

baroclinically unstable front

- Primitive equations model
 (ROMS) on the Earth Simulator
 (Japan)
- 1000 km × 2000 km × 4000 m
 $\Delta x = 2$ km
 100 vertical levels
- forcing by restoring on large-scale density gradient

Surface reconstruction

Vorticity and horizontal velocity у (kп) 200 (кп) y (km) y (km) y (km) y (km) 100 200 300 400 500 600 100 200 300 400 500 600 300 400 500 600 300 400 500 600 x (km) x (km)x (km)x (km) оос (kii) л л (кш) л ر (km) 2008 مر E 100 200 300 400 500 100 200 300 400 500 600 300 400 500 600 300 400 500 600 x (km)x (km)x (km)x (km)

SQG reconstruction

500 m reconstruction

Vorticity and horizontal velocity

SQG reconstruction