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Motivation



Subgrid-scale parameterisation

Many atmospheric and oceanic models use large eddy
simulation to represent unresolved processes. Common
implementation: eddy viscosity represents net effect.

It’s desirable to partition the feedback into contributions from
different wave modes, i.e. wave drag.

=⇒ This is a problem in balanced dynamics. How can the effect
of the unbalanced motion on the balanced flow be
parameterised?



Balanced-unbalanced interactions

Conventional view: these interactions are weak for fast gravity
waves (e.g. Errico 1981; Majda & Embid & 1998). Numerical
simulations indicate minimal transfer (e.g. Farge & Sadourny
1989; Dewar & Killworth 1995).

However, gravity waves can play an important role, e.g., in
mesoscale flows and certain synoptic weather systems.

∗ Timescale separation breaks down for larger Ro and Fr.

∗ Geostrophic-ageostrophic transfer can be significant
even when the ageostrophic motion is weak (e.g. Errico
1982).

Possible outcome: enhanced dissipation of balanced flow.



Theoretical approaches

Breakdown of balance:

∗ Ford et al. (2000): Lighthill generation

∗ Vanneste & Yavneh (2004,2007): exponential asymptotics,
unbalanced instabilities

∗ McWilliams et al. (1998,1999): solvability conditions on
balance equation

Asymptotic results: relevance to balanced-unbalanced
interactions is unclear.

=⇒ But mechanism underlying spontaneous imbalance should
be robust: generation of unbalanced motion by balanced flow (cf.
Warn 1986, Warn & Menard 1986).



Applicability to turbulent flows

Idea. Focus on specific manifestation: growth via random
straining by the balanced flow.

Understand rotating, stratified problem by appealing to the
analogy with the N = 0, f = 0 case.

∗ non-rotating, unstratified: 2-D/3-D interactions

∗ rotating, stratified: geostrophic/ageostrophic interactions



Three-dimensionalisation of
2-D turbulence

References: Phys. Fluids, 16, 2918 (2004)

Phys. Fluids, 17, 125102 (2005)



Setup

Study growth of 3-D perturbations to 2-D base flow, i.e., 3-D N-S
with initial conditions given by decaying 2-D turbulence.

Procedure:

initial conditions long simulation perturbation

random basic state

t=0



Mechanism

Problem is related to the three-dimensionalisation of mixing
layers.

Extension to decaying 2-D turbulence: time-dependent
hyperbolic instability (cf. Leblanc & Cambon 1997; Caulfield &
Kerswell 2000).

Physical idea: Growth of 3-D perturbation, u, via random
straining by the 2-D base flow, U , with ǫ := kh/kz → 0,

∂u

∂t
+ U · ∇u = −∇p − u · ∇U .
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layers.

Extension to decaying 2-D turbulence: time-dependent
hyperbolic instability (cf. Leblanc & Cambon 1997; Caulfield &
Kerswell 2000).

Physical idea: Growth of 3-D perturbation, u, via random
straining by the 2-D base flow, U , with ǫ := kh/kz → 0,

∂u

∂t
+ U · ∇u = −∇p − u · ∇U .

Implications

∗ Initial growth rate can be predicted from properties of 2-D
flow (Lapeyre et al. 2000; Straub 2003).

∗ Anisotropic interaction between large horizontal scales and
small vertical scales.
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2D-3D interactions: spectral energy transfers

Perturbation extracts 2D energy at large horizontal scales:
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2D-3D interactions: eddy viscosity

Eddy viscosity models effect of perturbation as νeddy∇
2
U

(e.g. Domaradzki et al. 1993).

εa = 1/2
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Simple structure implies straightforward parameterisation.



Rotating stratified turbulence

Reference: J. Atmos. Sci., 65, 766 (2008)



Governing equations for rotating stratified flow

We consider the non-hydrostatic Boussinesq equations for
buoyancy fluctuations about a mean profile:

∂u

∂t
+ u · ∇u + 2Ω × u = −

1

ρ0
∇p + b + νD(u)

∂b

∂t
+ u · ∇b = −N2w + νD(b)

∇ · u = 0,

where

b := gθ′/θ0 is the (perturbation) buoyancy

θ = θ0 + (dθ̄/dz)z + θ′ is the potential temperature

N = ( g
θ0

dθ̄
dz

)
1

2 is the Brunt-Vaisala frequency



Governing equations for rotating stratified flow

We consider the non-hydrostatic Boussinesq equations for
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Geostrophic-ageostrophic interactions

Geostrophic (balanced) and ageostrophic (unbalanced) motion
are defined using normal modes (Bartello 1995).

Defining Rossby and Froude numbers as Ro := U
fL

, Fr := U
NH

,
one expects analogous results for:

∗ Synoptic-scale flow (rotation dominated)
L0 > Ld, where Ld = (Ro/Fr)Lo is the deformation radius

∗ Weak stratification (gravity waves negligible)
H0 < Hb where Hb = U/N is the buoyancy scale

i.e. instability of ageostrophic modes due to random straining by
geostrophic flow. Particularly interested in GAG interaction.

=⇒ What happens more generally?



Spectral energy transfers

Perturbation extracts geostrophic energy at large horizontal
scales:

Ld/L0=0.21
Ld/L0=0.33
Ld/L0=0.67
Ld/L0=1.33
Ld/L0=2.67
Ld/L0=3.33

khTnet vs kh (strong strat, εa < 1)

kh

k
h
T

n
e
t

101

0.0002

0

-0.0002

-0.0004

-0.0006

Tnet := TGA−G + TAA−G

Damping is maximised for 1.



Eddy viscosity

For synoptic flow, there is preferential damping of large-scale
geostrophic modes:
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Nature of the “wave drag” depends on the structure of the basic
state.



Summary

Balanced-unbalanced interactions in rotating stratified turbulence
can be analogous to 2D-3D interactions in homogeneous
turbulence.

Requirements:

∗ synoptic flow (L0 > Ld)

∗ adequate resolution of small-scale modes (Hb > ∆z)



Summary

Balanced-unbalanced interactions in rotating stratified turbulence
can be analogous to 2D-3D interactions in homogeneous
turbulence.

Requirements:

∗ synoptic flow (L0 > Ld)

∗ adequate resolution of small-scale modes (Hb > ∆z)

Implications

∗ Anisotropy needs to be taken into account; vertical
resolution is crucial.

∗ Multiscale parameterisation may be useful.

∗ Classical picture of predictability may need to be
updated.
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