K. Ngan Atmospheric and Oceanic Sciences McGill University

- 1. Motivation
- 2. Three-dimensionalisation of 2-D turbulence
- 3. Rotating stratified turbulence
- 4. Summary

Collaborators: P. Bartello (Math and Stats) D.N. Straub (AOS)

Motivation

Subgrid-scale parameterisation

Many atmospheric and oceanic models use large eddy simulation to represent unresolved processes. Common implementation: eddy viscosity represents net effect.

It's desirable to partition the feedback into contributions from different wave modes, i.e. wave drag.

 \implies This is a problem in balanced dynamics. How can the effect of the unbalanced motion on the balanced flow be parameterised?

Balanced-unbalanced interactions

Conventional view: these interactions are weak for fast gravity waves (e.g. Errico 1981; Majda & Embid & 1998). Numerical simulations indicate minimal transfer (e.g. Farge & Sadourny 1989; Dewar & Killworth 1995).

However, gravity waves can play an important role, e.g., in mesoscale flows and certain synoptic weather systems.

- * Timescale separation breaks down for larger Ro and Fr.
- * Geostrophic-ageostrophic transfer can be significant even when the ageostrophic motion is weak (e.g. Errico 1982).

Possible outcome: enhanced dissipation of balanced flow.

Theoretical approaches

Breakdown of balance:

- * Ford et al. (2000): Lighthill generation
- * Vanneste & Yavneh (2004,2007): exponential asymptotics, unbalanced instabilities
- McWilliams et al. (1998,1999): solvability conditions on balance equation

Asymptotic results: relevance to balanced-unbalanced interactions is unclear.

→ But mechanism underlying spontaneous imbalance should be robust: generation of unbalanced motion by balanced flow (cf. Warn 1986, Warn & Menard 1986).

Applicability to turbulent flows

Idea. Focus on specific manifestation: growth via random straining by the balanced flow.

Understand rotating, stratified problem by appealing to the analogy with the N = 0, f = 0 case.

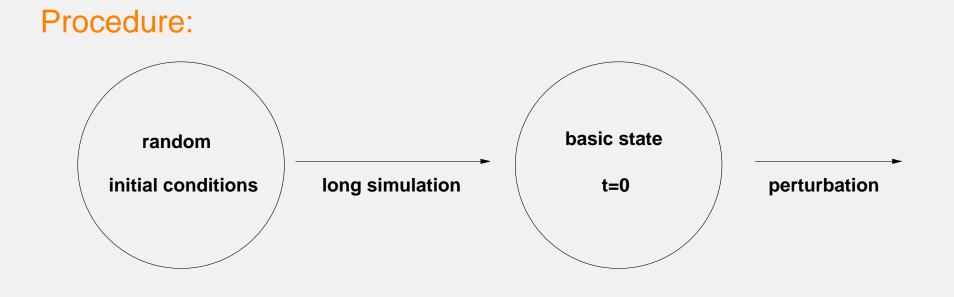
- * non-rotating, unstratified: 2-D/3-D interactions
- * rotating, stratified: geostrophic/ageostrophic interactions

Three-dimensionalisation of 2-D turbulence

References: Phys. Fluids, **16**, 2918 (2004) Phys. Fluids, **17**, 125102 (2005)

Setup

Study growth of 3-D perturbations to 2-D base flow, i.e., 3-D N-S with initial conditions given by decaying 2-D turbulence.



Mechanism

Problem is related to the three-dimensionalisation of mixing layers.

Extension to decaying 2-D turbulence: time-dependent hyperbolic instability (cf. Leblanc & Cambon 1997; Caulfield & Kerswell 2000).

<u>*Physical idea*</u>: Growth of 3-D perturbation, u, via random straining by the 2-D base flow, U, with $\epsilon := k_h/k_z \rightarrow 0$,

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{U} \cdot \boldsymbol{\nabla} \boldsymbol{u} = -\boldsymbol{\nabla} p - \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{U}.$$

Mechanism

Problem is related to the three-dimensionalisation of mixing layers.

Extension to decaying 2-D turbulence: time-dependent hyperbolic instability (cf. Leblanc & Cambon 1997; Caulfield & Kerswell 2000).

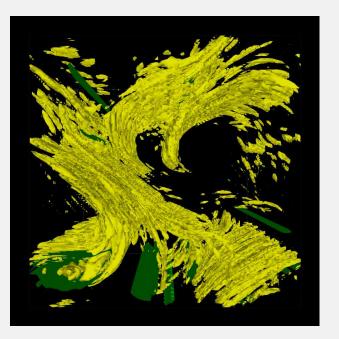
<u>*Physical idea*</u>: Growth of 3-D perturbation, u, via random straining by the 2-D base flow, U, with $\epsilon := k_h/k_z \rightarrow 0$,

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{U} \cdot \boldsymbol{\nabla} \boldsymbol{u} = -\boldsymbol{\nabla} p - \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{U}.$$

Implications

- Initial growth rate can be predicted from properties of 2-D flow (Lapeyre et al. 2000; Straub 2003).
- Anisotropic interaction between large horizontal scales and small vertical scales.

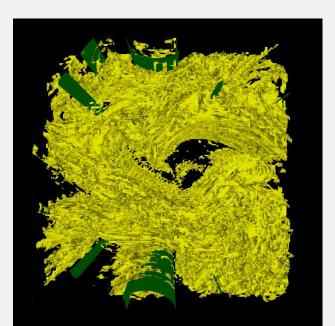
Real space picture



(top view)

yellow: $|\boldsymbol{\omega}_h|$ isosurfaces

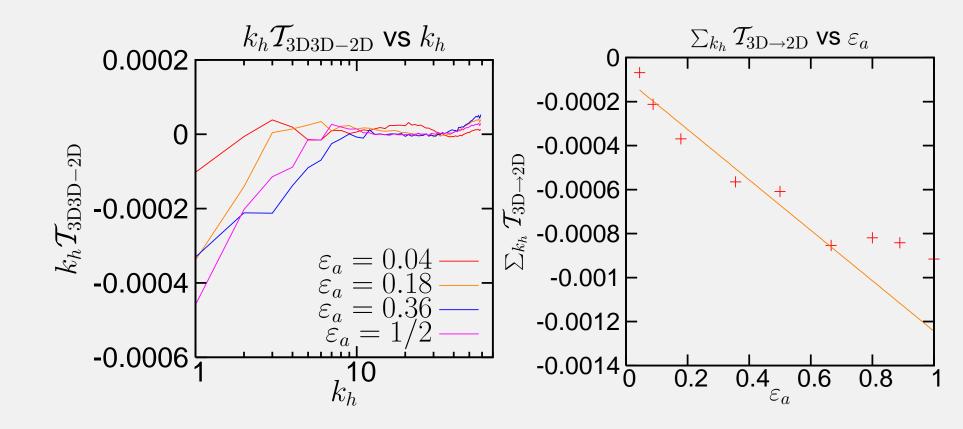
green: ω_z isosurfaces



Random straining by the base flow causes the perturbation vorticity to grow

2D-3D interactions: spectral energy transfers

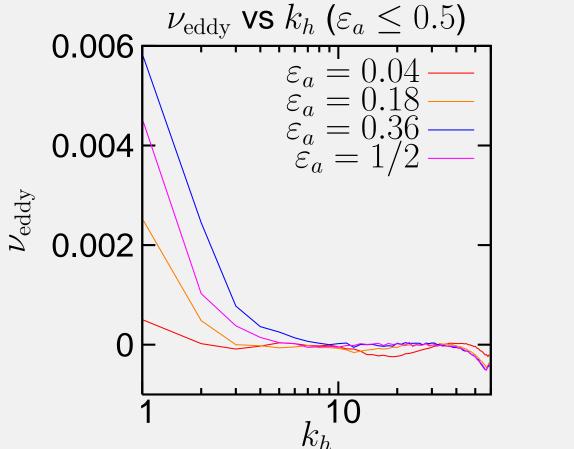
Perturbation extracts 2D energy at large horizontal scales:



$$\mathcal{T}_{3\mathrm{D}3\mathrm{D}-2\mathrm{D}}(k_h) = \Re \sum_{|\boldsymbol{k}_h|=k_h} -U_l(\boldsymbol{u}\cdot\boldsymbol{\nabla}\boldsymbol{u})_l^*(\boldsymbol{k})$$

2D-3D interactions: eddy viscosity

Eddy viscosity models effect of perturbation as $\nu_{eddy} \nabla^2 U$ (e.g. Domaradzki et al. 1993).



$$u_{\text{eddy}} = -\sum_{k_h} \frac{-U_l(\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u})_l^*}{k_h^2 E_{2D}}$$

 ν_{eddy} parameterises perturbation rather than subgrid-scale processes.

Simple structure implies straightforward parameterisation.

Rotating stratified turbulence

Reference: J. Atmos. Sci., 65, 766 (2008)

Governing equations for rotating stratified flow

We consider the non-hydrostatic Boussinesq equations for buoyancy fluctuations about a mean profile:

$$\begin{aligned} \frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u} + 2\boldsymbol{\Omega} \times \boldsymbol{u} &= -\frac{1}{\rho_0} \boldsymbol{\nabla} p + b + \nu \mathcal{D}(\boldsymbol{u}) \\ \frac{\partial b}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} b &= -N^2 \boldsymbol{w} + \nu \mathcal{D}(b) \\ \boldsymbol{\nabla} \cdot \boldsymbol{u} &= 0, \end{aligned}$$

where

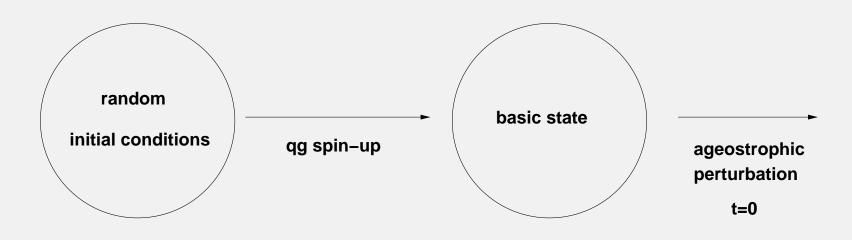
 $b := g\theta'/\theta_0$ is the (perturbation) buoyancy $\theta = \theta_0 + (d\bar{\theta}/dz)z + \theta'$ is the potential temperature $N = (\frac{g}{\theta_0} \frac{d\bar{\theta}}{dz})^{\frac{1}{2}}$ is the Brunt-Vaisala frequency

Governing equations for rotating stratified flow

We consider the non-hydrostatic Boussinesq equations for buoyancy fluctuations about a mean profile:

$$\begin{aligned} \frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u} + 2\boldsymbol{\Omega} \times \boldsymbol{u} &= -\frac{1}{\rho_0} \boldsymbol{\nabla} p + b + \nu \mathcal{D}(\boldsymbol{u}) \\ \frac{\partial b}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} b &= -N^2 \boldsymbol{w} + \nu \mathcal{D}(b) \\ \boldsymbol{\nabla} \cdot \boldsymbol{u} &= 0, \end{aligned}$$

Setup



Geostrophic-ageostrophic interactions

Geostrophic (balanced) and ageostrophic (unbalanced) motion are defined using normal modes (Bartello 1995).

Defining Rossby and Froude numbers as $Ro := \frac{U}{fL}$, $Fr := \frac{U}{NH}$, one expects analogous results for:

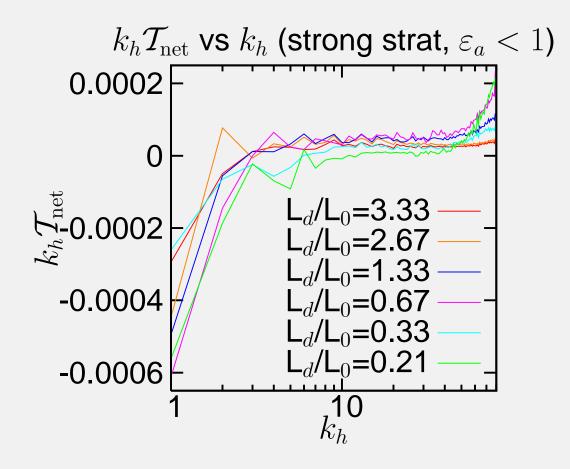
- * Synoptic-scale flow (rotation dominated) $L_0 > L_d$, where $L_d = (Ro/Fr)L_o$ is the <u>deformation radius</u>
- * Weak stratification (gravity waves negligible) $H_0 < H_b$ where $H_b = U/N$ is the buoyancy scale

i.e. instability of ageostrophic modes due to random straining by geostrophic flow. Particularly interested in GAG interaction.

 \implies What happens more generally?

Spectral energy transfers

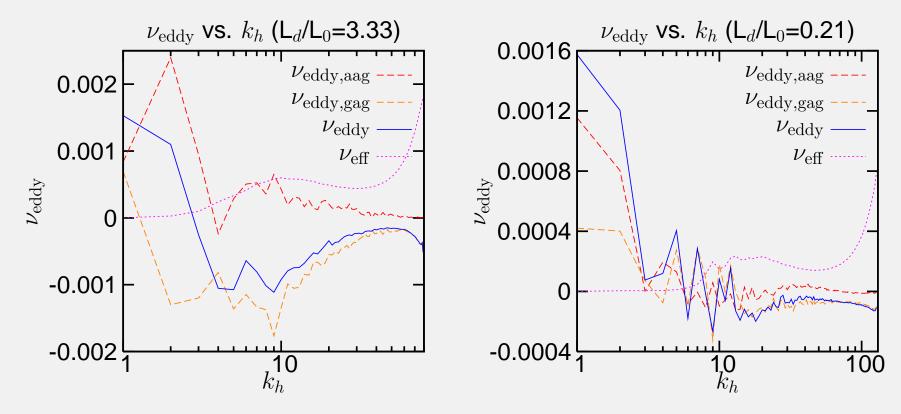
Perturbation extracts geostrophic energy at large horizontal scales:



 $\mathcal{T}_{net} := \mathcal{T}_{GA-G} + \mathcal{T}_{AA-G}$

Eddy viscosity

For synoptic flow, there is preferential damping of large-scale geostrophic modes:



Nature of the "wave drag" depends on the structure of the basic state.

Summary

Balanced-unbalanced interactions in rotating stratified turbulence can be analogous to 2D-3D interactions in homogeneous turbulence.

Requirements:

- * synoptic flow ($L_0 > L_d$)
- * adequate resolution of small-scale modes ($H_{\rm b} > \Delta z$)

Summary

Balanced-unbalanced interactions in rotating stratified turbulence can be analogous to 2D-3D interactions in homogeneous turbulence.

Requirements:

- * synoptic flow ($L_0 > L_d$)
- * adequate resolution of small-scale modes ($H_{\rm b} > \Delta z$)

Implications

* Anisotropy needs to be taken into account; vertical resolution is crucial.

* Multiscale parameterisation may be useful.

* Classical picture of predictability may need to be updated.