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Shallow Water Equations

Du

Dt
− fv = −g

∂h

∂x
, (2.8)

Dv

Dt
+ fu = −g

∂h

∂y
, (2.9)

where f = 2Ω sinφ is the Coriolis parameter. Equations 2.8-2.9 shows that if the

horizontal velocities u and v are initially independent of depth they will remain so

as the Coriolis and pressure gradient forces are also independent of depth. This

enables us to integrate equation 2.1 from z = 0 (the lower boundary) to z = h

(the depth of the fluid) to obtain

h

(

∂u

∂x
+

∂v

∂y

)

+ w(h) − w(0) = 0. (2.10)

At z = 0 there can be no flow normal to the boundary so w(0) = 0 while at

the free surface w(h) = Dh/Dt. So, in vector form, equations 2.8 - 2.10 can be

written

Du

Dt
+ fk × u = −g∇h (2.11)

∂h

∂t
+ ∇ · (hu) = 0 (2.12)

where u is the horizontal velocity and only the two components perpendicular to

k, the local vertical, of equation 2.11 are considered.

The shallow water equations 2.11-2.12 are commonly expressed in terms of

the vertical component of the relative vorticity ζ = vx − uy and the divergence

δ = ux + vy:

Dζ

Dt
+ (ζ + f)δ − βv = 0, (2.13)

Dδ

Dt
+ δ2 − 2J(u, v) − fζ + βu = −g∇2h, (2.14)
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If we now consider the vertical component for a fluid at rest we obtain

1

ρ

∂p

∂z
= −g.

This equation states that the vertical pressure gradient is balanced by gravity.
This is known as hydrostatic balance.

In taking the hydrostatic approximation we assume that the vertical acceleration
is negligible compared to the vertical pressure gradient.

Integrate with the boundary condition that p(x, y, h) = p0 gives

p(z) = ρg(h− z) + p0.

Eliminate p from the horizontal momentum equations:

Du

Dt
− fv = −g

∂h

∂x
,

Dv

Dt
+ fu = −g

∂h

∂y
,

where f = 2Ω sin φ is the Coriolis parameter.
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Integrate ∇ ·u from z = 0 (the lower boundary) to z = h (the depth of the fluid)
to obtain

h

(
∂u

∂x
+

∂v

∂y

)
+ w(h)− w(0) = 0.

At z = 0 there can be no flow normal to the boundary so w(0) = 0 while at the
free surface w(h) = Dh/Dt. So, in vector form we have:

Du

Dt
+ fk × u = −g∇h (1)

∂h

∂t
+ ∇ · (hu) = 0 (2)

where u is the horizontal velocity and only the
two components perpendicular to k, the local
vertical, of equation ?? are considered.
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Shallow Water Equations

• Slow modes and fast modes
• Balanced flow
• Potential vorticity
‣ materially conserved
‣ develops fine scales
‣ homogeneous regions separated by sharp gradients
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Potential Vorticity Conservation

where β = ∂f/∂y. Rewriting equation 2.12 in the form

Dh

Dt
+ hδ = 0 (2.15)

enables us to eliminate δ from equation 2.13 to give

D

Dt

(

ζ + f

h

)

≡
DΠ

Dt
= 0, (2.16)

where

Π ≡
ζ + f

h
(2.17)

is the potential vorticity (PV). Equation 2.16 states that the PV is conserved

following a fluid parcel. Although equation 2.16 has been derived using several

assumptions, in particular the absence of forcing, it is still approximately true in

atmospheric and oceanic flows provided the timescale of the flow under consider-

ation short enough (< 4 days McIntyre [2002b]).

2.2 Linearised equations

In chapter 1 we stated that the PV controls the dominant large scale ‘balanced’

motion. Here we show this using the linear equations.

Linearising equations 2.11-2.12 about a state of rest (u = 0, h = H) and

taking f to be constant gives
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Motivates contour representation for PV

Dritschel and Ambaum 
(1997)

Dritschel, Polvani and 
Mohebalhojeh (1999)



Choice of  Variables

• PV controls balanced motion
• Choose other two variables that represent 

(to leading order) unbalanced motion
‣ vanish in the limit of vanishing Fr and Ro
‣ hierarchy of such variables:

and their time derivatives
‣ see Mohebalhojeh and Dritschel 2000

of the variables (layer depth h and horizontal velocity u) that are directly useful

for visualising the fluid flow. However, this form of the equations hides some

underlying mathematical properties such as the Lagrangian conservation of PV

(equation 2.16). It has been shown [Dritschel and Viudez, 2003, Mohebalhojeh

and Dritschel, 2000b] to be beneficial to rewrite the equations in terms of dif-

ferent variables. Since the PV field is central to the balanced dynamics and has

the property that it is materially conserved, Π is a natural choice for one of the

prognostic variables. This is unconventional but not unprecedented. Thuburn

[1996], Bates et al. [1995] and Temperton and Staniforth [1987] for example, each

employ models that use PV as a prognostic variable. Here we use the contour

advection method developed by Dritschel and Ambaum [1997] and Dritschel et al.

[1999]. This method is outlined in the following section.

Given equation 2.16 as one of our prognostic equations, we now have to choose

the other two variables. A common variable choice is (ζ, δ, h̃) so an obvious choice

would be to replace the vorticity ζ with potential vorticity Π and keep the other

two variables. However, small errors in calculating the nonlinear terms in the

prognostic equation for h̃ can result in erroneous gravity waves in the divergence

field [Dritschel and Mohebalhojeh, 2000]. Numerous studies (for example Mo-

hebalhojeh and Dritschel [2000b], Dritschel and Viudez [2003] and Smith and

Dritschel [2006]) have shown that it is advantageous to avoid evolving h and in-

stead use prognostic equations for variables that vanish in the limit of vanishing

Rossby and Froude numbers. Equations of this form then have the property that

geostrophic balance is recovered, as expected, when Fr ∼ Ro " 1. Mohebalhojeh

and Dritschel [2000a] derive hierarchies of variables for which this is true. Their

hierarchies are based on the variables δ and γ (and their time derivatives), where

δ = ∇ · u, (2.72)

is the divergence (as introduced in section 2.1) and
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γ = ∇ · a (2.73)

= ∇ ·
Du

Dt
(2.74)

= fζ − βu − c2∇2h̃, (2.75)

is the divergence of the acceleration a. Note that for for constant background

rotation (β = 0), γ/f is the ageostrophic vorticity. It has been shown that

in this case, i.e. on an f-plane, that δ and γ themselves are the best choice of

variables over a wide range of Fr and Ro [Mohebalhojeh and Dritschel, 2000b].

It is not obvious that these variables should work so well on the sphere due to

the breakdown of geostrophic balance at the equator. However, we shall see in

chapter 4 that they are remarkably effective.

The prognostic equations for δ and γ in spherical coordinates [Smith and

Dritschel, 2006]1 are

δt = γ − |u|2 − 2[uφ(uφ + ζ) + vφ(vφ − δ)] − ∇ · (δu), (2.76)

γt = c2∇2{∇ · [(1 + h̃)u]} + 2ΩBλ − ∇ · (Zu), (2.77)

where c2 ≡ gH (mean-square gravity wave speed), B ≡ c2h̃ − 1
2 |u|

2 (Bernoulli

pressure), and Z = f(ζ + f). We now have three prognostic equations for the

variables (Π,δ,γ). However, we still need h̃, u and v to solve these equations.

Writing u as the sum of a streamfunction and divergence potential we have

u = k × ∇ψ + ∇χ, (2.78)

where
1some of the work here was completed before publication in Smith and Dritschel [2006]
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Parameter Space
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low Fr, low Ro high Fr, high Ro

PV field: red indicates positive, blue indicates negative

Turbulence Simulations



Cyclone-Anticyclone AsymmetryCase 1
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Figure 3.10: Probability density functions of depth h̃ for the 4 cases. Dotted

lines show the distribution at t = 0, 10, 20, 30, 40 and the solid line shows the

time-mean distribution.

68

Case 1

h
~-0.025 0.025

0

0.07

Case 2

h
~-0.02 0.02

0

0.07

Case 3

h
~-0.6 0.6

0

0.05

Case 4

h
~-0.3 0.3

0

0.04

Figure 3.10: Probability density functions of depth h̃ for the 4 cases. Dotted

lines show the distribution at t = 0, 10, 20, 30, 40 and the solid line shows the

time-mean distribution.

68

Frrms

Rorms

Frrms

Rorms

Frrms

Rorms

Frrms

Rorms



Cyclone-Anticyclone Asymmetry

• asymmetry generally favours anticyclones

• distribution increasingly asymmetric with 
increasing Froude and Rossby numbers

• significant tail of strong cyclones in most cases

In general: there is a greater area of 
anticyclonic vorticity but cyclones 

are more extreme.



Potential Vorticity Homogenisation

Figure 3.6: Evolution of Π (top row), h̃ (second row), δ/(2Ω) (third row) fields

for case 1, shown at times t = 0, 5, 10. The contour interval is 0.002 for h̃, 0.0005

for δ/(2Ω) and 0.005 for γ/(2Ω)2.
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Figure 3.9: Evolution of Π (top row), h̃ (second row), δ/(2Ω) (third row) fields

for case 4, shown at times t = 0, 5, 10. Only every 8th contour of the PV field is

plotted. The contour interval is 0.02 for h̃, 0.01 for δ/(2Ω) and 0.5 for γ/(2Ω)2.

49

low Fr, low Ro

high Fr, high Ro

t = 0 t = 5 t = 10



Potential Vorticity Homogenisation

Figure 1: Schematic from McIntyre (1982), suggesting the robustness of nonlinear
jet-sharpening by inhomogeneous PV mixing. Here most of the mixing is on the
equatorward flank of an idealized stratospheric polar-night jet, in a broad midlatitude
“surf zone” due to the breaking of Rossby waves arriving from below. The profiles
can be thought of as giving a somewhat blurred, zonally-averaged picture. The light
and heavy curves are for conditions before and after the mixing event, where “after”
means “after the wave has largely decayed”. The difference between the two zonal-
velocity curves on the right is dictated by inversion of the difference between the
two PV curves on the left, like smoothed versions of Equation (5.1) and Figure 7b
since over several scale heights the middle stratosphere behaves qualitatively like
a shallow-water model with LD roughly of the order of 2000 km (Robinson 1988;
Norton 1994). Vortex stretching associated with the horizontally-narrowing jet scale
increases the relative vorticity at the pole (e.g., Dunkerton et al. 1981, Figures 4,
5). Angular momentum is reduced even though the jet is sharpened. Long-range
radiation stresses cannot be neglected. For Jovian and terrestrial-ocean jets, with
their relatively smaller latitudinal scales, the mixing is typically strong on both sides
of each jet (e.g., Marcus 1993; Hughes 1996). In the Jovian case the mixing is almost
certainly due to a different stirring mechanism altogether, namely, convection in the
planet’s interior; see footnote 4 and Section 8.
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Figure 6: Diagnostics for the experiment of Figure 5. The left-hand panel shows
the time evolution of the zonal-mean position ȳ(q, t) of each PV contour that wraps
the domain, i.e. that closes on itself only through the periodic boundaries x =
±π. The latitudinal coordinate y is in units of LD, and time t is in units of
4π/|q′|max. PV mixing (in which the turbulent dissipation of fine-grain PV gradients
is achieved here by contour surgery) changes ȳ(q, t) in time, here leading to a highly
inhomogeneous distribution of positions ȳ at late times, as expected from the positive-
feedback heuristic. Broadly speaking, the bunching of curves corresponds to eastward
jet formation and the spreading of curves to westward jet formation. The right-hand
panel shows the zonally averaged zonal velocity ū(y, t) at the initial and final times
t = 0, 84. See remark at the end of Section 7. The inhomogeneous PV mixing
has produced three strong eastward jets, two of them sharply peaked in the manner
characteristic of well developed eddy-transport barriers in a shallow-water system,
with PV distributions close to jump discontinuities. Such PV distributions invert
to velocity profiles locally resembling the idealized forms shown in Figure 7, which
correspond to perfectly sharp PV jump discontinuities.
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Multiple jets as PV 
staircases:  the Phillips 
effect and the resilience of 
eddy-transport barriers.
Dritschel and McIntyre
J. Atmos. Sci. special issue from 
AGU Chapman conference “Jets 
and annular structures in 
geophysical fluids.

Figure 7: Idealized mass and velocity profiles for perfect PV staircase steps, as
determined by PV inversion. Tick marks are at intervals of y = b = LD. From left to
right, the first two profiles are for a single step or mixed zone, respectively the mass
shift or surface-elevation change given by (5.2)ff. and the velocity profile given by
(5.1)ff. The remaining profiles are the velocity profiles for two, three and an infinite
number of perfect steps, the last from Eq. (5.3) shifted by b. Note that the angular
momentum changes required to form these staircase structures are nonvanishing, and
are precisely dictated by the PV inversions, or equivalently by Eq. (7.2).
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Potential Vorticity Homogenisation
• Calculate mean latitude of all PV contours that 

wrap the pole
• At each time, perform a cluster analysis on these 
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Potential Vorticity Homogenisation
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Figure 3.17: σ̄rms versus Fr (left hand figure) and versus Ro (right hand figure)

Remember that small values of σ̄rms indicate well clustered contours.

will indicate local tightening of PV contours which is exactly what we expect to

find in westerly jets. Figures 3.18-3.21 show the time evolution of P for the four

cases. We plot the scaled palinstrophy (log10(P/(3×Prms)) in order to highlight

the areas with the steepest gradients. Also plotted is the spatial distribution of

the Froude number which indicates where the inertia-gravity wave speed is fast

compared to the flow speed. Note that the times shown are t = 0, 5, 10, 20 and 40

so that the first 4 figures show the early evolution during which the adjustment

is occurring and the final figure shows the long term behaviour.

Structures in the plots of the local Froude number and the palinstrophy field

are closely correlated although, since the Froude number depends on the global

distribution of PV, it is smoother and does not reveal the smaller scale features

evident in the palinstrophy plots. Since the jets meander, it may be that a

significant component of the local flow is in the cross-jet direction and this may

mask the presence of strong flow along the jet axis in the Froude number plots.

The palinstrophy plots suffer from no such difficulties. The detailed structure

evident in these plots enables us to precisely locate the jet axes as the regions

where the PV gradient is strongest (see the dark regions in the palinstrophy plots,

84

• Low value of           indicates 
better clusters

• Suggests that increasing 
importance of rotation 
(decreasing Rossby number) 
inhibits clustering
‣ contrary to predictions based 

on Rhines scale
‣ similar results to Cho & 

Polvani 1996
‣ importance of forcing and 

dissipation
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Cluster Analysis Issues

• input parameters for clustering algorithms

• constraint that PV contours must wrap sphere
‣ precession of polar vortices

• latitudinal averaging
‣ meandering of jets

Complex structure of jets defies 
simple classification - instead a more 

local examination is required.



Palinstrophy

t=0 t=5 t=10 t=20 t=40

t=0 t=5 t=10 t=20 t=40

Figure 3.18: Evolution of palinstrophy (top) and local Froude number (bottom)

for case 1. For each figure the range has been determined to optimise the detail

shown in the figure so these figures are for qualitative rather than quantitative

comparison. Note also that the figures are not evenly spaced in time.

interaction between the jets and the vortices produces strongly meandering jets

that then inhibit the merger of the two remaining northern hemisphere vortices

which are trapped in the meanders of the jet.
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t=0 t=5 t=10 t=20 t=40

t=0 t=5 t=10 t=20 t=40

Figure 3.21: Evolution of palinstrophy (top) and local Froude number (bottom)

for case 4. For each figure the range has been determined to optimise the detail

shown in the figure so these figures are for qualitative rather than quantitative

comparison. Note also that the figures are not evenly spaced in time.
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high Fr, high Ro

low Fr, low Ro

measures strength of gradient of PV

both to the precession of the ‘polar’ vortices and to the nature of the clustering

algorithm which is, despite all our efforts, very sensitive. A more robust measure

appears to be the average value of the validity index over the last 10 days of

each simulation. This number tells us if the validity index perceives the PV

contours to be well clustered or not. Unsurprisingly, given the results in table

3.4, the r.m.s. standard deviation gives the most informative results. Figure

3.17 shows σ̄rms versus Frrms (on the left) and versus Rorms (on the right). We

see that there is a slight correlation between σ̄rms and Fr, with the PV contours

becoming more clustered with increased Froude number. However, the correlation

between σ̄rms and Ro is striking. σ̄rms decreases with increasing Ro, levelling out

at around Ro = 2. This suggests that increasing the importance of rotation

(i.e. smaller Rossby number) inhibits the clustering of PV contours. This seems

counter intuitive and is contrary to predictions based on the Rhines scale, but

Cho and Polvani [1996] find that a similar result emerges from their spherical

simulations. They suggest that the variation of β with latitude coupled with the

lack of forcing, causes the jets to be ill defined. They note that the only obvious

strong jets are those surrounding the polar vortices and, as mentioned above, the

polar vortices pose a problem for our method since they rarely sit neatly over the

pole.

Two factors seriously inhibit the performance of the clustering approach: the

constraint the PV contours must wrap the sphere and the latitudinal averaging.

The first causes the strong jets around the ‘polar’ vortices to be neglected, the

second smears out the complex longitudinal structure of the jets. We have found

that a local analysis of the jet characteristics is much more revealing. This can

be achieved by examining the palinstrophy field

P =
1

2
|∇q|2, (3.16)

which measures the strength of the gradient of the PV. A large palinstrophy value
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Conclusions

• Explored new ways of looking at cyclone-
anticyclone asymmetry and jet formation.

• Cyclone-anticyclone asymmetry

• favours anticyclones

• asymmetry increases with both Froude 
and Rossby number

• significant tail of extreme cyclones

• Jet formation

• cluster analysis misses complexity of jets

• palinstrophy field reveals jet structure


