Effect of near-inertial modes on the midlatitude double gyre problem

David Straub, McGill

OUTLINE

- 1. Motivation
- 2. Model Setup
- 3. Results
- 4. Conclusion

Collaborator: Aaron Gertz

- Simple example: take 2d turbulence as "balanced flow"; and 3d modes as "unbalanced"
- More involved: take QG turbulence as "balanced"; and inertia-gravity modes as "unbalanced" (e.g., Ngan *et al.*, 2007)

- Simple example: take 2d turbulence as "balanced flow"; and 3d modes as "unbalanced"
 - unstratified thin (hydrostatic) fluid
 - but allowing \mathbf{u} to vary in z
 - double gyre forcing on depth averaged mode
 - large scale stochastic forcing on vertically varying mode

Model Equations

$$u_t + \nabla \cdot (\mathbf{v}u) - fv = -P_x + F^x - D^x$$
$$v_t + \nabla \cdot (\mathbf{v}v) + fu = -P_y - D^y$$
$$\mathbf{v} \equiv (u, v, w) \quad \nabla_3 \cdot \mathbf{v} = 0 \qquad P_z = 0$$

- **J** domain: 4000km square box ; $513 \times 513 \times 2$
- $f = f_0 + \beta y \text{ with } f_0 = 7.5 \times 10^{-5} \text{s}^{-1}, \ \beta = 2 \times 10^{-11} \text{m}^{-1} \text{s}^{-1}$
- hyperviscosity (∇^6) with slip conditions at boundaries
- Rayleigh drag on 2d mode
- Forcing: double gyre for 2d mode. Stochastic (and large scale) for 3d modes

$$\bullet$$
 $\delta_i = (U_{Sv}/\beta)^{1/2} \sim 44$ km \sim 5.5dx

Model Equations

$$\nabla^2 \psi_t + J(\psi, \nabla^2 \psi + \beta y) = -\overline{\mathbf{v}' \cdot \nabla \zeta'} - \overline{\mathbf{v}'_x \cdot \nabla v'} + \overline{\mathbf{v}'_y \cdot \nabla u'} + F - D$$
$$u'_t + \mathbf{v} \cdot \nabla u - \overline{\mathbf{v} \cdot \nabla u} - fv' = F^x - D$$
$$v'_t + \mathbf{v} \cdot \nabla v - \overline{\mathbf{v} \cdot \nabla v} + fu' = -D$$

- C-grid
- Multigrid method for elliptic inversion (L-P Nadeau)

$$F^x = a(t) \sin(y/L) e^{-(x^2 + y^2)/(0.5L)^2}$$

a(t) given by an Ornstein-Ulenbeck process (with characterictic timescale of 1 day)

A day in the life of u^\prime

NOON

4AM

NOON (next day)

Vertical Vorticity ($r_{\text{Rayleigh}} = 5 \times 10^{-8} \text{s}^{-1}$)

With 3d Forcing

Without 3d Forcing

With 3d Forcing

E(t)

Streamfunctions

Typical Streamfunction

Time mean

Power, dissipation and transfer spectra

Red: $E_2d(k)$ Green: $E_3d(k)$

Red: Rayleigh Drag Blue: 2d-to-3d transfers

Green: Hyperviscosity

Dependence on level of 3d forcing

p.11

$r_{\text{Rayleigh}} = (0, 1, 2.5, 5, 10) \times 10^{-8} \mathrm{S}^{-1}$

Without 3d forcing

With (weak) 3d forcing

Zero Rayleigh Drag (mean streamfunctions)

Without 3d Forcing

With 3d Forcing

- When externally forced, geostrophic-to-inertial mode transfers can have a significant damping effect on the geostrophic motion.
- The effect is larger for stronger forcing of the inertial modes and weaker Rayleigh friction
- Stratified case: high vertical resolution is needed (i.e., $k_z > N/U$ or $Nh/fL \le O(1)$ for $O(1)R_0$)

- thin aspect ratio \rightarrow hydrostatic
- Horz. PGF $\sim g \tilde{\rho} k_h / \rho_0 k_z$
- HPGF small if

$$N^2 \ll k_z^2 U^2$$
 (assuming $T \sim L/U$) or

 $N^2 k_h^2 \ll f^2 k_z^2$ (assuming $R_0 \sim O(1)$)

Model Equations

$$\nabla^2 \psi_t + J(\psi, \nabla^2 \psi + \beta y) = -\overline{\mathbf{v}' \cdot \nabla \zeta'} - \overline{\mathbf{v}'_x \cdot \nabla v'} + \overline{\mathbf{v}'_y \cdot \nabla u'} + F - D$$
$$u'_t - (f + \nabla^2 \psi)v' - \zeta'\overline{v} = -(\overline{u}u' + \overline{v}v')_x + F^x - D^x$$
$$v'_t + (f + \nabla^2 \psi)u' - \zeta'\overline{u} = -(\overline{u}u' + \overline{v}v')_y - D^y$$

- C-grid
- Multigrid method for elliptic inversion (L-P Nadeau)

•
$$F^x = a(t) \sin(y/L)$$
 or $F^x = a(t) \sin(y/L) e^{-0.25(x^2 + y^2)/L^2}$

a(t) given by an Ornstein-Ulenbeck process (with characterictic timescale of 1 day)