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IntroductionIntroduction

• The aim is to develop a theory that systematically includes 
anisotropic turbulence and internal waves

• The difficulty: turbulence is a nonlinear, multi-scale, stochastic 
phenomenon. Analytical theories exist for simplest flows that 
are locally isotropic and depend on a single dimensionless 
parameter, Re. Geophysical flows are anisotropic with waves

• Reynolds averaging does not differentiate between scales and 
does not discern contributions from different processes. 
Reynolds stress closures employ the concept of “invariant 
modeling” and are not flexible enough

• Spectral approach is more suitable



The Quasi-Normal Scale Elimination (QNSE) 
theory of turbulence with stratification
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We consider fully 3D turbulent flow with imposed vertical 
temperature gradient dΘ/dz. 
Governing equations in Boussinesq approximation:  

In linear approximation this system supports gravity waves 

with Brunt-Vaisala frequency ( ) 2/1

dz
dgN Θ≡ α



transformed velocity and temperature equations-Fourier

Velocity Green function becomes tensorial:
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ννννh ,ννννz - horizontal and vertical eddy viscosities, Pαβ - projection operator
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is temperature Green function, κκκκh and κκκκ z are horizontal and vertical eddy diffusivities
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φ is the angle between k and the vertical,

Eliminate pressure using continuity equation; obtain momentum equation in a 
self-contained form using formal solution to the temperature equation:

complex poles => waves!
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Normal Scale Elimination Model (QNSE)-Quasi
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fj (k,ω) is a stochastic force representing stirring of a given velocity mode by all 
other modes; postulated as quasi-Gaussian, solenoidal, homogeneous in space and 
time: 

As in other quasi-normal models, we seek the solution in the form
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Due to anisotropy, viscosities and diffusivities are different in the 
vertical and horizontal directions. 

Our goal is to calculate the mapping parameters, ννννh ,ννννz κκκκh ,κκκκz

Effective viscosities and diffusivities in Green functions describe damping of a 
mode by nonlinear interactions with all other modes.

In other words: mapping onto 
quasi-Gaussian fields governed by
the Langevin equations



Normal Scale Elimination (QNSE) method-Quasi

Central problem is treatment of nonlinearity. Perturbative 

solution based on expansion parameter Re is strongly divergent

General idea: Re is O(1) for smallest scales of motion =>

• Derive formal solution for these small scales

• Using the assumption of Quasi-Gaussianity perform averaging 
over infinitesimal band of small scales. Compute corrections to 
“effective” or “eddy” viscosity and heat diffusivity. Viscosity 
increases; Re for the next band remains small
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• Repeat the above procedure for next band of smallest scales.



Theoretical results
We obtain a coupled system of 4 differential equations for all corrections. The 
system is solved analytically for weak and numerically for arbitrary 
stratification yielding expressions for scale-dependent horizontal and vertical 
eddy viscosities and eddy diffusivities.

Partial scale elimination yields a subgrid-scale model for LES; complete scale 
elimination yields eddy viscosities and eddy diffusivities for RANS (Reynolds-
average Navier-Stokes) models.

Case of weak stable stratification
Expansion in powers of spectral Froude number, � -1 ≈ (kO / k)2/3



Scale- dependent horizontal and vertical eddy 
viscosities and diffusivities

Figure. 1: Normalized horizontal and vertical eddy viscosities and diffusivities
as functions of k / k0. Dashed vertical line indicates the maximum wave number
threshold of internal wave generation in the presence of turbulence; kO = (N 3/ε)1/2



Turbulence spectraTurbulence spectra
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Spectrum ~ k -3 is generated!
Transition from -5/3 to -3 spectrum at large scales; coefficients are in a good 
agreement with experimental data and LES (Carnevale et al, JFM, 2001).

Due to anisotropy traditional 3D energy spectrum provides only limited 
information. Various 1D spectra are computed analytically for weak 
stratification:

The Gargett et al.(1981) -normalized spectrum of the vertical shear:

This scaling presents the normalized vertical shear spectrum as a universal 
function of (k/kO). The QNSE theory provides rigorous theoretical 
basis for this universal scaling



Comparison with experimental dataComparison with experimental data

The spectrum of the vertical shear of the horizontal velocity 
in the ocean; data from Gregg, Winkel, Sanford, JPO (1993). 
The theoretical prediction is shown by a gray line. 
This is the first time that these spectra are derived within an 
analytical theory.



S. Smith et al., JAS, 1987

Our theory predicts the vertical 
spectrum which is in a good 
agreement with the spectra  
observed in the stratosphere, 
troposphere, mesosphere, and 
thermosphere (our prediction is 
well approximated by the 
dashed line).    

Another example -
Atmospheric spectra



Other 1D spectraOther 1D spectra
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The anisotropization manifests itself as energy increase 
in the horizontal velocity components at the expense of 
their vertical counterpart

Recall the vertical spectrum of horizontal velocity,



Temperature spectraTemperature spectra
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Assuming that for relatively strong stratification 
ε
θ
=2Γε(dΘ/dz)2/N 2 where Γ~0.3 is the mixing efficiency,

one gets, 
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RANS modelingRANS modeling

Invoking energy balance equation, the eddy coefficients are recast in 
terms of Richardson number Ri = N2/ S2 or Froud number Fr = ε ε ε ε / NK 

Figure 2: Normalized eddy viscosities and diffusivities as functions of Ri and Fr.

•For Ri>0.1, both vertical viscosity and diffusivity decrease, with the diffusivity 
decreasing faster than the viscosity (“residual” mixing due to effect of IGW?)
•Horizontal mixing increases with Ri. The model accounts for flow anisotropy.
•The crossover from neutral to stratified flow regime is replicated.



Comparison with data: PrComparison with data: Prt t as a function of Rias a function of Ri

Inverse Prandtl number, κz/νz, as a function of Ri. 
Solid line - theoretical prediction by QNSE theory Sukoriansky et al. (2006). Black 
and white squares and black tringles - data from Halley Base, Antarctica collected 
in 1986 (Yague et al., 2001). White circles show data by Monti et al. (2002) and 
grey rectangles are data by Strang and Fernando (2001). Small dots show data 
from Halley Base (British Antarctic Survey 2003–2004)



Dispersion relation for internal waves with Dispersion relation for internal waves with 

turbulenceturbulence
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The limit of strong stratification => classical dispersion relation for linear 
waves, ω=N sinθ. Turbulence dominates at small scales. Criterion for 
wave generation is ω2 ≥ 0 giving

Waves exist if the solution of the secular equation has a real part. Identifying 
this real part with the wave frequency ω we obtain the dispersion relation



Validation of the QNSE theory in modeling of Validation of the QNSE theory in modeling of 

atmospheric boundary layers and numerical atmospheric boundary layers and numerical 

weather predictionweather prediction

� Validation was conducted for models in both K-ε and K-ℓ
format

� Data from numerous observation campaigns was employed 

CASES99

Data-asterisks,

model - lines 

Potential temperature Wind speed 



Unstable stratification (Convection)Unstable stratification (Convection)



ConclusionsConclusions
� Derivation of the QNSE model of turbulence is maximally proximate to 

first principles

� Theory explicitly resolves horizontal-vertical anisotropy

� Accounts for the combined effect of turbulence and waves

� Predicts correct behavior of Prt as a function of Ri

� Anticipates the absence of the critical Ri

� Yields modification of the classical dispersion relation for internal waves 
that accounts for turbulence

� Yields analytical expressions for various 1D and 3D spectra; captures 
transition from the -5/3 to the  N2kz

-3 vertical spectrum of the horizontal 
velocity and recovers Gargett et al. scaling

� Provides subgridscale closures for both LES and RANS

� The QNSE theory has been implemented in K-ε and K-ℓ models of 
stratified ABL

� Good agreement with CASES-99 and other data sets has been found for 
cases selected for the GABLES1 and GABLS 2 experiment

� The new stability functions improve predictive skills of HIRLAM in +24h 
and +48h weather forecasts 

� Is being incorporated in WRF (Weather Research and Forecasting) – a 
new model developed at NCAR. 
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