On the Energetics of Turbulent Mixing in Stratified Fluids

Rémi Tailleux

Department of Meteorology, University of Reading

Goal of the Talk

- To question the classical phenomenology of the diffusive route for kinetic energy dissipation in stratified turbulent flows
- To question the validity and accuracy of two commonly made approximations in the study of stratified turbulence at low Mach numbers:
 - Incompressible assumption (so far proven to be valid for adiabatic reversible motions but never for diabatic irreversible ones, see Ansumali et al, 2005)
 - Linear of the equation of state

Routes to dissipation in freely decaying stratified turbulence

- Viscous Route: Conversion of Kinetic Energy into Internal Energy IEo
- Diffusive route: Conversion of Kinetic Energy into?
 - mean Gravitational Potential Energy (classical view)
 - Internal Energy as for viscous dissipation (new view)

Idealized Mechanism for the diffusive dissipation of Kinetic Energy

Random Shuffling Experiment

Results

Adiabatic shuffling

$\Delta APE = \Delta (AIE + AGPE) = -\Delta KE$ $\Delta AIE \ll \Delta AGPE$

Lateral Mixing Step

 $\Delta (GPE_r + IE_r) = \Delta KE$ $\Delta GPE_r = -\Delta (IE_r - IE_0) \neq \Delta KE$ $\Delta IE_0 = \Delta KE$

Energetics of the Random Shuffling experiment

Energetics of Turbulent Mixing: Definitions

Conversion KE/GPE = "Density Flux"

$$W = \int_V \rho g w \, dV$$

Conversion IE/KE = Work of Expansion/Contraction

$$B = \int_{V} P \frac{D\upsilon}{Dt} (\rho dV)$$

Irreversible Conversion of KE/IE by viscous dissipation

$$D = \int_{V} \rho \varepsilon \, dV$$

Exact versus Boussinesq Energetics

Exact versus Boussinesq Energetics

Exact versus Boussinesq Energetics

Results

Boussinesq	Non Boussinesq
 B always > 0 and very small (proportional to molecular diffusion) 	 B always < 0 as soon as fluid turbulent enough, and proportional to turbulent diffusion
 Wr always > 0 and	 Wr > 0 if dY/dz < 0, but Wr <0
proportional to turbulent	if dY/dz > 0. Also proportional
diffusion	to turbulent diffusion
 Wr-B > 0 and proportional	 Wr-B > 0 and proportional to
to turbulent diffusion	turbulent diffusion

Where is the Error?

We may have

$$\int_{V} X dV = \int_{V} \left[X_{0} + \varepsilon X_{1} + \varepsilon^{2} X_{2} + \cdots \right] dV$$

such that: $|\varepsilon X_{1}| \ll X_{0}, \qquad |\varepsilon^{2} X_{2}| \ll X_{1}, \cdots$

It is WRONG, however, to conclude that:

$$\left| \int_{V} X_{0} dV \right| \gg \left| \int_{V} \varepsilon X_{1} dV \right|, \qquad \left| \int_{V} \varepsilon X_{1} dV \right| \gg \left| \int_{V} \varepsilon^{2} X_{2} \right|$$

$$B_{bouss} = \int_{V} P \alpha \kappa \nabla^{2} T dV \approx \int_{V} \left[-\rho_{0} g z \alpha_{0} \kappa \nabla^{2} T + \cdots \right] dV$$
$$\approx \kappa g \left[\langle \rho \rangle_{bottom} - \langle \rho \rangle_{top} \right] + \cdots$$

$$B_{exact} = \int_{V} P \alpha \kappa \nabla^{2} T dV = -\int_{V} \kappa \nabla T \cdot \nabla (\alpha P) dV$$
$$= -\int_{V} \kappa \alpha \nabla T \cdot \nabla P \, dV - \int_{V} \kappa P \frac{\partial \alpha}{\partial T} \|\nabla T\|^{2} \, dV$$
$$\approx \kappa g \left[\langle \rho \rangle_{bottom} - \langle \rho \rangle_{top} \right] - \int_{V} \kappa P \frac{\partial \alpha}{\partial T} \|\nabla T\|^{2} dV + \cdots$$

The coefficient Wr

$$W_r^{bouss} = \int_V \kappa \|\nabla z_r\|^2 \rho_r \alpha_r g \frac{\partial T_r}{\partial z_r} dV_r$$

$$W_r^{exact} \approx \int_V \kappa \|\nabla z_r\|^2 \rho_r \alpha_r g \frac{\partial T_r}{\partial z_r} dV_r$$
$$- \int_V \kappa \|\nabla z_r\|^2 \rho_r C_{pr} P_r \frac{\partial}{\partial T_r} \left(\frac{\alpha_r}{\rho_r C_{pr}}\right) \left(\frac{\partial T_r}{\partial z_r}\right)^2 dV_r$$

Conclusions

- Compressibility effects and nonlinearity of the equation of state are leading order effects in stratified turbulence: Coupled dynamics and thermodynamics!
- Boussinesq approximation removes KE diffusively as in reality, but phenomenology is very different
 - very small B>0 versus very large B<0
 - Put dissipated KE into GPE instead of IEo
 - d(GPE)/dt > 0 whereas d(GPE)/dt > 0 or < 0 in reality

Some Implications

- Questions foundations for Munk and Wunsch (1998), Wunsch and Ferrari (2004), Huang (2004) whose validity critically relies on a fraction of mechanical energy input being converted into GPE
- Questions foundations for the anti-turbulence theorem of Paparella and Young (2002) whose validity critically relies on B going to zero as molecular diffusivity goes to zero
- Requires re-thinking and re-defining the concept of mixing efficiency

Want to know more?

Tailleux (2007): On the energetics of stratified turbulent mixing, irreversible thermodynamics, Boussinesq models, and the Ocean Heat Engine Controversy,

> submitted to Journal of Fluid Mechanics, presently being extensively revised (NB: available version contains errors)

<u>http://www.met.reading.ac.uk/~remi/publications</u> email: <u>R.G.J.Tailleux@reading.ac.uk</u>

Mixing efficiency

The work of expansion/contraction B

$$\begin{split} B &= \int_{V} P \frac{Dv}{Dt} \, dm = \int_{V} \frac{\alpha P}{\rho C_{p}} \dot{Q} \, dm - \int_{V} \frac{1}{\rho c_{s}^{2}} \frac{DP}{Dt} dV \\ B_{bouss} &= \int_{V} \kappa \alpha_{0} g \rho_{0} \frac{dT}{dz} = \kappa \rho_{0} \alpha_{0} g \left(\langle T \rangle_{top} - \langle T \rangle_{bottom} \right) \\ B_{exact} &\approx \int_{V} \kappa \alpha \rho g \left(1 + \frac{\|\nabla_{h} P\|^{2}}{2\rho^{2} g^{2}} \right) \frac{\partial T}{\partial z} dV + \int_{S} \frac{\kappa}{\rho_{b} g} \frac{\|\nabla_{h} P_{b}\|^{2}}{2} dS \\ &- \int_{V} \kappa \rho C_{p} \frac{\partial}{\partial T} \left(\frac{\alpha P}{\rho C_{p}} \right) \|\nabla T\|^{2} dV \end{split}$$

1. Start with a piece of stratified fluid at rest AGPE=AIE=0

2. Stir the fluid randomly by adding some mechanical energy KE APE = AGPE+AIE = KE

3. Homogenize the temperature of the parcels horizontally $\triangle APE = -KE$ $\triangle GPE_r + \triangle IE_r = KE$