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Mesoscale spectra

® In the atmosphere and ocean, the mesoscales are
more energetic than balanced theory suggests

® (Question: Where does that energy come from?
Smaller scales, cascading up? Local instabilities?
Larger scales, cascading down?

® Most likely all contribute to some degree

Question addressed here: fo what extent can such
spectra be generated from balanced large scale flow?




Nastrom & Gage (1985) Spec’rra

global dataset collected
by commercial 747's near
the tropopause, mainly
from 30°N to 60°N
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Nastrom & Gage (1985) Spectra

global dataset collected
by commercial 747's near
the tropopause, mainly
from 30°N to 60°N

spectra of KE and 6
variance have the same
universal shape

transition from K-> slope
to K-5/3 near 600km

some variation with
latitude and season

more recent MOZAIC
observations give a

consistent picture Cho &
Lindborg (2001)
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GCM simulations

Spectrum AIong 45°N and 200 hPa
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Review of geostrophic turbulence

® Charney (1971) noted that quasigeostrohpic flow with
constant stratification is isomorphic fo two-dimensional
turbulence when boundaries are neglected:

conserves F, — —% and / = q2 where q — @Qw
= inverse cascade of energy S(K) — (Oe2/3—5/3
& direct cascade of potential enstrophy Z(K) = Cznz/BK_l

= | E&(K) = C,n?*3K3

® Blumen (1978) considered uniform PV flow driven by
potential temperature on a rigid lid (i.e. SQG):

conserves 3D energy [/ = 100 and 0 variance T' = @

= direct cascade of energy at surface T(K) — CT€2/3K_5/3

® Juckes (1994) argued for the relevance of SQG in the atmosphere



Surface-interior interaction

® The two seemingly opposing flows co-exist, and may be
excited by a single baroclinic shear
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Surface-interior interaction

® The two seemingly opposing flows co-exist, and may be
excited by a single baroclinic shear

Total KE transitions from

K-3 to K53 at wavenumber

. Kt determined by the
s/ relative forcing between
N the surface and interior

E(k)

<«<—— Surface mode KE

Interior instability

Surface instability Interior modes KE
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dl ~9.1x10~*
dy ~ 3.0 x 1071
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FIGURE 7. Energy spectrum according to (71), together with the data points given by Nastrom et
al. (1984). Circles: zonal wind power spectrum. Crosses: meridional wind power spectrum.

Lindborg (1999)



Baroclinic model

® Modal QG model like Flierl 1978 but with explicit interior and
surface dynamics, with mean velocity U(z), constant stratification N2

and Ekman drag at the lower boundary

Advection Inversion
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Baroclinic model

® Modal QG model like Flierl 1978 but with explicit interior and
surface dynamics, with mean velocity U(z), constant stratification N2

and Ekman drag at the lower boundary

Advection Inversion
oty
0z |, =6
z (V24T =g¢
" g
0z |, =0
N-1
® Mean velocity forcing becomes: U(z) =U(2) + Y  Uj;¢;(z)
=0
where U; is the projection of (U-U°) onto mode j, and U® solves
S_f2 VL@(Z) - dU > _ wlAT dU> __ vlAaB
'U” = H [ NZ(Z) . dz (zT) =V~-0", dz (ZB) =V~0O




Truncated Modal Model

® doubly periodic = switch to Fourier domain (~) in

horizontal

® expand zZ[ into vertical modes and then truncate, for
simplicity we truncated at BCl: ' = g + V101 (2)

® the vertical structure of ZLTand &B can similarly be

expressed in terms of ‘surface modes’ o' (K, z) and
67 (K, 2)

® shear forcing U(z) is decomposed into a quadratic
surface component and a sinusoidal interior

component: [/(z) = U®(z) + Uy V2 cos(nz/H)



Three linear instability types
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KE spectra at the surface

Energy density
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Theory for transition wavenumber

Assume forward enstrophy cascade of the form:
E(K) = Con?l* K~

with enstrophy cascade rate:

n=—Qy(H) vq|l.=n = ’%‘JQZ‘/(H)Q

Equate the enstrophy cascade with a temperature cascade at the
surface: _

that has energy cascade rate:

2
f2@T L B f@T
€ — —T;J U@T’Z:H:K,Q Ny

Then assuming Ce~Ca gpng e =10 =| B =




Theory for transition wavenumber
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Atmospheric Parameters

® NCEP LTM zonally averaged zonal velocity profile U(z) at 45°N

® compute US(z) from U.(top) and U.(bottom) estimated from
U values at 200mb&250mb and 1000mb&925mb

® residual U(z)-U%(z) put into first baroclinic mode
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Atmospheric Parameters

® NCEP LTM zonally averaged zonal velocity profile U(z) at 45°N

® compute US(z) from U.(top) and U.(bottom) estimated from
U values at 200mb&250mb and 1000mb&925mb

® residual U(z)-U%(z) put into first baroclinic mode

® pseudo-height vertical coordinate (Hoskins '72)

z =

® Parameters: H~10km, N=10"2s"!
(La=1000km), U, (top)=5.6x10"*s,
U.(bot)=2.1x103s!, U;=-2.6ms"!

=>

RONES

Ki=1/77 rad/km (=480km)
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Atmospheric Parameters: surface spectra
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Conclusions

® shallow mesoscale spectra near surfaces can be
explained by balanced dynamics alone (although
other processes are surely also active)

® QG models typically dont show this effect due to
insufficient vertical resolution (in layered models) or
exclusion of surface signals (in modal models)

® caveats: perhaps too little interior energy at small
scale since SQG signal rapidly decays away from
surface, eventual breakdown as Rossby number
increases



What about the ocean?

Forget and Wunsch (2007) data set, computing U,=V+O via

thermal wind at the base of the mixed layer

Ldef
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KE Spectral Density

Example Calculation (130E, 60S):
Surface KE spectra

KE Spectra At Surface (8 modes) 130E, 60S

LT

- BC| most dominant
at deformation scale

— SURF dominates
| small scales

Note: in a layered
model, some of the

SURF mode would
sz h=sorkm A, =1km | | be present in BCI at
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Hamilton et al (2008 submitted)
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Hamilton et al (2008 submitted)
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Hamilton et al (2008
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Lindborg
2007

107° 162 10 10°

k (cpkm)

Fi1G. 3. The spectra of vertical vorticity and horizontal diver-
gence in the upper troposphere and lower stratosphere. The
dashed line represents the curve 1.57¢,k'? and the dotted line
represents the curve g,k '; k is here measured in cpkm, which
means that 1/k is the corresponding wavelength measured in ki-
lometers.

ABSTRACT

The author shows that the horizontal two-point correlations of vertical vorticity and the associated
vorticity wavenumber spectrum can be constructed from previously measured velocity structure functions
in the upper troposphere and lower stratosphere. The spectrum has a minimum around k = 1072 cycles per
kilometer (cpkm) corresponding to wavelengths of 100 km. For smaller wavenumbers it displays a k' range
and for higher wavenumbers, corresponding to mesoscale motions, it grows as k. The two-point corre-
lation of horizontal divergence of horizontal velocity and the associated horizontal spectrum is also con-
structed. The horizontal divergence spectrum is of the same order of magnitude as the vorticity spectrum
in the mesoscale range and show similar inertial range scaling. It is argued that these results show that the
mesoscale motions are not dominated by internal gravity waves. Instead, the author suggests that the
dynamic origin of the k' range is stratified turbulence. However, in contrast to Lilly, the author finds that
stratified turbulence is not a phenomenon associated with an upscale energy cascade, but with a downscale

energy cascade.
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