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Mesoscale spectra
• In the atmosphere and ocean, the mesoscales are 

more energetic than balanced theory suggests

• Question:  Where does that energy come from?  
Smaller scales, cascading up? Local instabilities? 
Larger scales, cascading down?

• Most likely all contribute to some degree

Question addressed here: to what extent can such 
spectra be generated from balanced large scale flow?



Nastrom & Gage (1985) Spectra
• global dataset collected 

by commercial 747’s near 
the tropopause, mainly 
from 30˚N to 60˚N



Nastrom & Gage (1985) Spectra
• global dataset collected 

by commercial 747’s near 
the tropopause, mainly 
from 30˚N to 60˚N

• spectra of KE and θ 
variance have the same 
universal shape 

• transition from K-3 slope 
to K-5/3 near 600km

• some variation with 
latitude and season

• more recent MOZAIC 
observations give a 
consistent picture Cho & 
Lindborg (2001)

≈600km

K-3

K-5/3

λeady
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Fig. 4. The zonal wavenumber spectrum of the variance
of the zonal wind along the 45◦N latitude circle near 200
hPa. Results for control simulations with the N270L40 ver-
sion of the GFDL SKYHI model (black) and a T639L24
version of the AFES model (red). The straight lines are
drawn with slopes of −3 and −5/3.

are the −3 and −5/3 slopes shown for reference. KH
were able to show diagnostically that the mesoscale
in the SKYHI model was energized significantly by
downscale nonlinear spectral cascades. The energy in-
put into small scales from the nonlinear cascades was
dissipated by the parameterized dissipation. This sug-
gests that the standard approach of simple dissipa-
tive subgrid-scale parameterizations is reasonable, al-
though obviously this conclusion depends on the real
world acting like the high-resolution SKYHI model
and not like the ECMWF model.

Recently we have been able to examine the same
one-dimensional spectrum computed from the winds
simulated in a 10-day integration with the T639L24
AFES GCM. The red curve in Fig. 4 shows these new
results from the AFES model run. It is encouraging
that AFES is also able to produce a simulation with a
realistic mesoscale regime. In fact, the results for the
spectrum in the two GCMs are quite similar until near
the end of the resolved wavenumber range, where the
SKYHI spectrum bends up and the AFES spectrum
bends down. The AFES result may be an artifact of
the reconstruction of the wind field along the latitude
circle from the spherical harmonic spectral represen-
tation, and is not present in two-dimensional spherical
harmonic spectra computed from the same wind fields.

So we now have documented two GCMs that pro-
duce fairly realistic spectra in the mesoscale, in con-

trast to Palmer’s (2001) experience with the ECMWF
model. The grid-point SKYHI models and the spectral
AFES model are rather different in their basic formula-
tion, but they do share a lack of artificial damping that
may come from semi-lagrangian advection schemes
now very commonly employed in GCMs (such as the
ECMWF model). It may be that with dissipation-
free basic numerics and an appropriate value for the
subgrid-scale dissipation parameters, comprehensive
global models will simulate a realistic amount of en-
ergy in the mesoscale.

With the availability of AFES running on the ES
it will be possible to determine how the result for the
horizontal spectrum depends on such factors as the
convective parameterization, vertical resolution and
subgrid-scale diffusion parameters employed.

6. Tropical cyclones

One issue related to the mesoscale meteorology
in global models that has attracted considerable at-
tention is the ability of GCMs to simulate tropical
cyclones. The great practical interest in forecasting
how global change may affect the climatology of trop-
ical cyclone numbers, tracks and intensities is one of
the main motivations for pursuing very fine resolution
GCM modeling. It has been known for some time that
global GCMs run in climate mode will spontaneously
generate tropical depressions and tropical cyclones. Of
course, mature intense tropical cyclones (hurricanes
and typhoons) in the real world have rather small sizes
(peak winds typically ∼50 km from the center) and
cannot be adequately resolved except by a very fine
scale model. However, the ability of GCMs with vari-
ous horizontal resolutions to simulate a somewhat re-
alistic climatology of tropical cyclone occurrence and
motion has been documented (e.g., Bengtsson et al.,
1995; Tsutsui, 2002). While moderate resolution mod-
els may be able to reproduce some aspects of the ob-
served tropical cyclone climatology, they are unable to
simulate the most intense storms observed in the real
atmosphere. For example, in multiyear control simu-
lations using global models with ∼300 km grid spacing
described by Broccoli and Manabe (1990) and Tsut-
sui (2002), the deepest central surface pressures in the
tropical cyclones that develop are about 980 hPa. In
a control simulation using a global model with ∼100
km effective grid spacing reported by Bengtsson et al.
(1995) the most intense tropical cyclone appearing had
a minimum central pressure of 953 hPa and peak sur-
face winds of ∼45 m s−1. Peak surface winds of some-

as not believable. Indeed we find that the steepening near
the end of the spectrum in Figure 1 has no counterpart in
the full 2D spectrum. Figure 2 shows this 2D total
horizontal wavenumber KE spectrum at 200 hPa calcu-
lated from the simulated vorticity and divergence fields
(equation (6) of KH). The left panel shows results for the
full range of wavenumbers resolved (1–639) and the
right panel shows a closeup of the 30–639 range. Results
are presented for the simulations with the control value of
the hyperdiffusion coefficient and with twice and one- half
this value. The result with the control value of diffusivity
displays a mesoscale regime that is close to a constant slope
overmuch of themesoscale, although there is a slight bending
down past n ! 300 and an abrupt increase at the highest few
wavenumbers. The anomaly right near the truncation wave-
number is a feature of the simulated spectra in thismodel at all
resolutions. The appearance of this feature suggests that the
nonlinear interactions in the model are resulting in a foward
cascade of energy that is arrested at the truncation scale and
accumulates there. This is a feature of many numerical
simulations and may be eliminated with an appropriately
scale-dependent dissipation. Fortunately, in this case the
apparently anomalous values are confined to just a few
wavenumbers.
[9] The model when run with the enhanced and reduced

diffusivity coefficients is much less successful in simulating
the observed constant slope of the mesoscale spectrum. It is
noteworthy that the doubled standard diffusivity run (red
curves) appears to be overdamped over most of the high

wavenumber end of the spectrum, but still exhibits a clear
shallowing of the spectrum in the mesoscale range, from say
n ! 80 to n ! 250.

4. Resolution Dependence and Scaling of
Parameterized Diffusion

[10] A series of simulations with different truncations
(from T39 to T639) and different values of the horizontal
diffusivity were run. By trial and error choices of the
diffusivity, the result in Figure 3 was obtained. This shows
simulated spectra that are nearly independent of the trunca-
tion over the n"3 and shallower mesoscale regimes (for
legibility the T39 result is not shown but it agrees well with
the others). The values of the diffusivity used in each of
these experiments is shown in the upper right panel. We find
that to obtain the convergent spectra we need to scale the
diffusivity approximately as a power law of the model
truncation (the regression fit shown in Figure 3 is 1.2 #
1021 nt

"3.22 m4s"1, where nt is the truncation wavenumber).
Also shown are results for the recommended diffusivity
values for T21, T31, T42 and T63 determined by Boville
[1991] in a similar manner using a different spectral GCM.
[11] The dashed line in Figure 3 shows spectra computed

from a T639 integration identical in all respects to the
control run, but employing twice the vertical resolution
(T639L48). The result is reasonably close to that from the
24-level version, although there seems to be a systematic
difference between n ! 10 and n ! 50 where the L48 model
has more KE than the L24 version.

5. Results for Dry Dynamical Core Model

[12] If KH are correct and the energy in the mesoscale is
at least partly due to downscale spectral cascades from the
synoptic scales, then a shallow mesoscale spectrum may be
expected even in a model with no moist convection. In order
to test this notion, we constructed a dry dynamical core

Figure 3. As in Figure 2 but for AFES run with different
numerical resolution. Results are shown for the 24 level
version truncated at T79, T159, T319 and T639, as well as
the T639L48 version. At each horizontal resolution a
diffusion coefficient has been determined by trial and error
to produce the fairly convergent behavior at the high
wavenumber end of the spectrum. The black symbols in the
inset show the diffusion coefficient as a function of
truncation obtained this way. The red dots show results
from a similar analysis of a version of the NCAR
atmospheric model obtained by Boville [1991]. The lines
in the inset are linear regressions.

Figure 4. As in Figure 2, but for the control T639L24
AFES (black) and the dynamical core version of the model
run with the same horizontal diffusion coefficient as
employed in the standard AFES (red) and with half this
diffusion coefficient (blue).
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Gridpoint N270-Koshyk and Hamilton (2001)

Spectral T639 - Takahashi et al. (2006)

• requires high horizontal 
and vertical resolution

• used hyperdiffusion

• convection scheme not 
necessary for transition



Review of geostrophic turbulence
• Charney (1971) noted that quasigeostrohpic flow with 

constant stratification is isomorphic to two-dimensional 
turbulence when boundaries are neglected:

conserves and whereZ = q2 q = ∇̃2ψE = −ψq
⇒ inverse cascade of energy

⇒
& direct cascade of potential enstrophy

E(K) = Cε2/3K−5/3

Z(K) = Czη2/3K−1

E(K) = Czη2/3K−3

• Blumen (1978) considered uniform PV flow driven by 
potential temperature on a rigid lid (i.e. SQG):

conserves 3D energy and θ variance

⇒ direct cascade of energy at surface

E = ψθs T = θ2
s

T (K) = CT ε2/3K−5/3

• Juckes (1994) argued for the relevance of SQG in the atmosphere



Surface-interior interaction

• The two seemingly opposing flows co-exist, and may be 
excited by a single baroclinic shear

Wavenumber

E(k)

Surface instability
Interior instability

-3

-5/3

Interior modes KE

Surface mode KE



Surface-interior interaction

• The two seemingly opposing flows co-exist, and may be 
excited by a single baroclinic shear

Wavenumber

E(k)

Surface instability
Interior instability

-3

-5/3

Interior modes KE

Surface mode KE

Total KE transitions from 
K-3 to K-5/3 at wavenumber 

KT determined by the 
relative forcing between 
the surface and interior

KT



Lindborg (1999)
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Figure 7. Energy spectrum according to (71), together with the data points given by Nastrom et
al. (1984). Circles: zonal wind power spectrum. Crosses: meridional wind power spectrum.

flatness factors grow very fast at small separations. Again, we want to emphasize that
the results are very well converged, and that calculations on subsets of the whole
data set gave practically identical results. Frisch (1995) defines intermittency at small
scales as equivalent to a flatness factor growing without bound for small scales. Here
we have found a case which closely corresponds to this definition of intermittency.
According to the Kolmogorov (1941) theory the flatness factor should be constant in
the energy inertial range of three-dimensional turbulence, while intermittency theories
(see Frisch 1995) predict a weak power law increase of the flatness factor as the
separation decreases. Van Atta & Chen (1970) measured a flatness factor following a
power law r−0.1 in the energy inertial range of an atmospheric boundary layer over
the ocean. The highest values measured were of the order of 10. Van Atta & Antonia
(1980) have made a survey of different experimental values of the flatness factor of the
velocity derivative, which is the single-point limit of (72). The highest flatness factors
are found in high Reynolds number atmospheric boundary layers and are around 30.
Here we have found a two-point flatness factor which is increasing roughly as r−3/2

for small separations and reaching values of two order of magnitudes larger than
previously have been measured. We shall not pursue this result further here, but only
use it to explain the very slow convergence of the third-order structure functions.
That the flatness factor is high means that the tails of the probability distribution are
wide. The tails correspond to relatively rare but high-amplitude events. There will be
two contributions to the third-order structure function from such events, one large
positive and one large negative contribution. The result comes out as a difference
between these two contributions and is itself very small compared to each of them.
Therefore, the convergence is very slow.
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Figure 4. Transverse and longitudinal second-order structure functions versus separation distance.
Upper curve is the transverse function. The r2/3-terms in (68) and (69) have been removed and the
remaining points divided by r2. Solid lines are curves given by the last two terms in (68) and (69)
divided by r2.

dimensional energy spectrum that we would have obtained if the structure functions
followed the relations (68) and (69) in an infinitely extended region. According (67)
we obtain

E1(k) = d1k
−5/3 + d2k

−3, (71)

where d1 ≈ 0.12(a1 +a2) ≈ 9.1×10−4 and d2 = 0.5(c1 + c2) ≈ 3.0×10−10 (with units in
metres and seconds). In figure 7 we have plotted this spectrum together with the data
points given by Nastrom et al. (1984). The spectra of Nastrom et al. are zonal and
meridional power spectra (without the factor 0.5). Half the sum of the two spectra
should therefore give the energy spectrum, and since the two spectra are very similar
each of them is very close to the energy spectrum. Given the fact that our spectrum
is computed on a different data set with a completely different method, we find the
agreement remarkably good.

7.2. Fourth- and third-order structure functions

We first present the results for the fourth-order structure functions, since we think that
these results will explain the poor convergence of the third-order structure function,
especially for small separations. In figure 8 we have plotted the longitudinal flatness
factor

FL =
〈δuLδuLδuLδuL〉

〈δuLδuL〉2
(72)

and the corresponding transverse flatness factor. For a Gaussian probability distri-
bution the flatness factor is equal to 3. In figure 8 we can see that the calculated
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Baroclinic model
• Modal QG model like Flierl 1978 but with explicit interior and 

surface dynamics, with mean velocity U(z), constant stratification N2 
and Ekman drag at the lower boundary
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Baroclinic model

• Mean velocity forcing becomes:

where Uj is the projection of (U-US) onto mode j, and US solves

7

The interior modes

The interior modes are identical to those used in a standard modal representation of QG, as in
Flierl (1978)and Hua and Haidvogel (1986). Specifically, φm(z) solve

Γφm = −λ2
mφm, ∂zφm|z=zT

= 0, ∂zφm|z=zB
= 0, (9)

where the λm are the eigenvalues and φm are the (orthonormal) eigenfunctions.

The surface modes

The surface modes are not independent of horizontal position, but in the horizontal Fourier projec-
tion, they are separable. We can separate the dependence on θ̃T,B and time from the spectral form
of the surface problems (7b) and (7c) by assuming ψ̃T,B(K, z, t) = θ̃T,B(K, t)φ̄T,B(K, z), where
φ̄T,B(K, z) are solutions to

(
−K2 + Γ

)
φ̄T = 0,

dφ̄T

dz

∣∣∣∣
z=zT

= 1,
dφ̄T

dz

∣∣∣∣
z=zB

= 0 (10)

and
(
−K2 + Γ

)
φ̄B = 0,

dφ̄B

dz

∣∣∣∣
z=zT

= 0,
dφ̄B

dz

∣∣∣∣
z=zB

= 1, (11)

respectively. The un-barred functions φT,B (the modes) in (8) are then

φT =
φ̄T (K, z)
φ̄T (K, zT )

and φB =
φ̄B(K, z)
φ̄B(K, zB)

.

The surface streamfunction components in (8) are evaluated at the positions of the upper and lower
boundaries, ψ̃T,B(K, t) = ψ̃T,B(K, zT,B, t), as are θ̃T,B, and so the inversion between them is most
easily expressed in terms of the φ̄ functions

ψ̃T,B(K, t) = φ̄T,B(K, zT,B)θ̃T,B(K, t).

The vertical structure of the problem is now expressed in terms of the functions φT (K, z), φm(z) and
φB(K, z), with Fourier coefficients ψ̃T , ψ̃m, and ψ̃B, and the full streamfunction is reconstructed as
in (8). As an example, in the Eady problem discussed in the previous section, the correspondance
to the general functions derived here is

φ̄T =
H cosh [µ(z − zB)/H]

µ sinhµ
and φ̄B =

H cosh [µ(z − zT )/H]
µ sinhµ

The projected mean velocity

The mean velocity U(z) must also be projected onto interior and surface components U(z) =
U I(z) + US(z). Since ΓUS is constant the surface component solves

ΓUS =
f2

H

[
∇⊥Θ(z)
N2(z)

]∣∣∣∣
zT

zB

,
dUS

dz
(zT ) = ∇⊥ΘT ,

dUS

dz
(zB) = ∇⊥ΘB, (12)

where H = zT − zB and ∇⊥ = (−∂y, ∂x). The mean surface velocity is then

US(z) =
1
H

∫ z

N2(z′)
[
(z′ − zB)

∇⊥ΘT

N2(zT )
− (z′ − zT )

∇⊥ΘB

N2(zB)

]
dz′. (13)

U(z) = US(z) +
N−1∑

j=0

U jφj(z)

• Modal QG model like Flierl 1978 but with explicit interior and 
surface dynamics, with mean velocity U(z), constant stratification N2 
and Ekman drag at the lower boundary
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• expand     into vertical modes and then truncate, for 
simplicity we truncated at BC1:

Truncated Modal Model

ψ̃I

U(z) = US(z) + Ũ1

√
2 cos(πz/H)

• shear forcing U(z) is decomposed into a quadratic 
surface component and a sinusoidal interior 
component:

ψ̃T ψ̃B

φT (K, z)
• the vertical structure of     and      can similarly be 

expressed in terms of ‘surface modes’            and 
blahblah  φB(K, z)

• doubly periodic ⇒ switch to Fourier domain (~) in 

horizontal

ψ̃I = ψ̃0 + ψ̃1φ1(z)



Three linear instability types
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Theory for transition wavenumber
• Assume forward enstrophy cascade of the form:

• with enstrophy cascade rate:

• Equate the enstrophy cascade with a temperature cascade at the 
surface:

• that has energy cascade rate:

• Then assuming             and  

a. The transition scale

Fig. 6 shows the upper-surface kinetic energy spectra for each of the series of simulations

in which ΘT
y is varied from −1/4 to −2. It is apparent that the transition scale between

the steep large-scale spectrum and the shallow small-scale spectrum is controlled by ΘT
y .

The particular dependence of the transition scale on the parameters of the problem can be

understood as follows. The upper-level energy spectrum in the forward enstrophy cascade

has the form

E(K) = CEη2/3K−3,

where the rate of enstrophy transfer at z = H is

η = −Qy(H) vq|z=H ≡ κqQy(H)2.

The overbar denotes a horizontal average, CE is a Kolmogorov constant, and we have defined

a PV diffusivity κq. The cascade of temperature variance at the upper surface leads to an
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CE ! CA κq ! κθ

Assuming equal diffusivities κq ! κθ and Kolmogorov constants CE ! CA, and solving

for the wavenumber where the two cascades are equal, one finds the upper-level transition

wavenumber

Kt !
N

f

∣∣∣∣
Qy(H)

ΘT
y

∣∣∣∣ .

It is instructive to rewrite this expression as

Kt !
∣∣∣∣L
−1
C + L−1

D

UB
z − UT

z + πU I
z

|UT
z |

∣∣∣∣ , (19)

where (3) and (16) were used to replace the PV and temperature gradients with shears,

U I
z ≡ dU I/dz(z = H/2) = −

√
2πU1/H is the mid-level interior shear and

LC =
f

N

|UT
z |
β

is the Charney length (see, e.g. Pedlosky 1987). The second expression for Kt now has

a form similar to that of the transition wavenumber found by Tulloch and Smith (2006),

L−1
D = f/NH, except that here (pulling out a factor f/N) there are two vertical scales,

added in reciprocal: the Charney depth (hC = fLC/N) and a second term corresponding

to the fluid depth H times the relative ratio of surface to total shears. In the limit of no

interior or bottom shear, and assuming hc % H, the vertical scale is just the Charney depth,

and Kt ! L−1
C . In the limit of β = 0, or UT

z & U I
z , the scale is H (Kt ! L−1

D ), as found in

the simpler model of Tulloch and Smith (2006).

The scaling prediction (19) is tested against the “measured” transition wavenumbers for

all simulations performed (including a third series identical to the second series, except the

bottom temperature gradient is held fixed at ΘB
y = 5) in Fig. 9 (see caption for details of the
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Theory for transition wavenumber
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• NCEP LTM zonally averaged zonal velocity profile U(z) at 45˚N

• compute Us(z) from Uz(top) and Uz(bottom) estimated from 
U values at 200mb&250mb and 1000mb&925mb

• residual U(z)-Us(z) put into first baroclinic mode
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• NCEP LTM zonally averaged zonal velocity profile U(z) at 45˚N

• compute Us(z) from Uz(top) and Uz(bottom) estimated from 
U values at 200mb&250mb and 1000mb&925mb

• residual U(z)-Us(z) put into first baroclinic mode

• pseudo-height vertical coordinate (Hoskins ‘72)
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z =

[
1−

(
p

p0

)2/7
]

· 28km

• Parameters: H≈10km, N=10-2s-1 
(Ld≈1000km), Uz(top)=5.6x10-4s-1,               
Uz(bot)=2.1x10-3s-1, U1=-2.6ms-1

=> Kt≈1/77 rad/km (≈480km)



Atmospheric Parameters: surface spectra
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Fig. 10. (a) The spectra using zonally and temporally averaged winds from NCEP at 45◦N.

Shown are the kinetic energy at the top surface (solid), the barotropic kinetic energy (dash-

dot), and the variance of potential temperature at the top surface (dashed). (b) Kinetic

energy spectra at different height values for the same run.
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Forward flux of 
θ(k)2 ≈ 8x10-5m2s-3

Transition scale ≈ 270km

Cho & Lindborg (2001): 
ε = 6x10-5m2s-3

Dewan (1997):
ε ~ 10-6 - 10-4 m2s-3



Conclusions
• shallow mesoscale spectra near surfaces can be 

explained by balanced dynamics alone (although 
other processes are surely also active)

• QG models typically don’t show this effect due to 
insufficient vertical resolution (in layered models) or 
exclusion of surface signals (in modal models)

• caveats: perhaps too little interior energy at small 
scale since SQG signal rapidly decays away from 
surface, eventual breakdown as Rossby number 
increases



What about the ocean?
Forget and Wunsch (2007) data set, computing Uz=∇⊥Θ via 

thermal wind at the base of the mixed layer

Deformation wavelength Transition wavelength
using Kt =

N

f

∣∣∣∣
∇Q(H)
∇ΘT

∣∣∣∣



Example Calculation (130E, 60S):
Surface KE spectra

BC1 most dominant 
at deformation scale

SURF dominates 
small scales

Note: in a layered 
model, some of the 
SURF mode would 

be present in BC1 at 
deformation scales. 
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Figure 9: Decomposed kinetic energy spectra for a spring-season forecast over the conti-

nental U.S. The forecasts were produced using the ARW with ∆x = 4 km.
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Figure 8: Kinetic energy spectra from ARW model averaged over 7-25 January 2005

DWFE forecasts for the continental U.S. The 24, 27, 30, 33, 36, 39, 42, and 45 h forecast

spectra were averaged for each daily forecast in this period. The ARW forecasts were

produced using ∆x = 5 km.
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separations we can only say that P goes to zero quite
fast. To obtain reasonable approximations of ! and "
in the corresponding wavenumber ranges, K : [2#/2000,
2#/2] km$1 and K %: [2#/200, 2#/2] km$1, we apply the
method of generalized Fourier transforms. This method
is justified if it can be assumed that the contributions to
the spectra from outside R and R % are small when k ∈
K and k ∈ K %, respectively. In turbulence theory the
method is standard (see Monin and Yaglom 1975). It
has also proved to work very well to construct the at-
mospheric kinetic energy spectrum using this method,
which was shown by L99 who obtained a kinetic energy
spectrum from the measured structure functions (17)

and (18), which actually fell on top of the spectrum
measured by Nastrom and Gage (1985).

From (19) the generalized two-dimensional vorticity
spectrum (28) can be calculated as

!&k' (

2$1"3#!1
3"

#!2
3"

q1k1"3 ) q2k$1

* 1.57q1k1"3 ) q2k$1. &31'

The first term is calculated as

2$kF +q1%$4"3, ( k #
0

& 1
2$ #

0

2$

q1%$1"3 exp&$ik% cos'' d' d% ( k #
0

&

q1%$1"3J0&k%' d% ( #
0

&

($1"3J0&(' d( q1k1"3,

&32'

where J0 is the zero-order cylindrical Bessel function.
The last integral in (32) can be found in standard math-
ematical handbooks and takes the value given in (31).
The second term is calculated as

2$kF +$q2 ln%, ( 2$k$1F +)2 ln%, q2

( 2$k$1F +2$*&r', q2 ( q2k$1. &33'

The last constant term in (19) does not give any con-
tribution to ! when k ∈ K since the generalized Fourier
transform of a constant function is a delta function.
Correspondingly, the two-dimensional divergence spec-
trum is calculated as

+&k' * 1.57p2k1"3, &34'

for wavenumbers larger than 1/200 cpkm. For smaller
wavenumbers " should go to zero monotonically with
decreasing wavenumber since the magnitude of P is
very small at large separations.

In Fig. 3, we have plotted the vorticity and the diver-
gence spectra. In this plot we have adopted the conven-
tion of measuring k in cpkm, which means that 1/k gives
a corresponding wavelength measured in km. As can be
seen, the vorticity spectrum takes a minimum around
k ( 0.01 cpkm. To the left of the minimum it ap-
proached a k$1 curve, consistent with quasigeostrophic
turbulence, and to the right of the minimum it grows as
k1/3. The divergence spectrum has the same form and is
of the same order of magnitude as the vorticity spec-
trum in the mesoscale region. However, its magnitude
is a little bit lower.

If the mesoscale energy spectrum were produced by
internal gravity waves the divergence spectrum would
have dominated over the vorticity spectrum. In the
ideal case of linear internal gravity waves without sys-
tem rotation, the vorticity spectrum should be identical
to zero. In the case of inertia–gravity waves we have

!,&k, -' (
f2

-2 +,&k, -', &35'

where !% and "% are the vorticity and the divergence
spectral densities in wavenumber–frequency space and

FIG. 3. The spectra of vertical vorticity and horizontal diver-
gence in the upper troposphere and lower stratosphere. The
dashed line represents the curve 1.57q1k1/3 and the dotted line
represents the curve q2k$1; k is here measured in cpkm, which
means that 1/k is the corresponding wavelength measured in ki-
lometers.
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Horizontal Wavenumber Spectra of Vertical Vorticity and Horizontal Divergence in
the Upper Troposphere and Lower Stratosphere
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ABSTRACT

The author shows that the horizontal two-point correlations of vertical vorticity and the associated
vorticity wavenumber spectrum can be constructed from previously measured velocity structure functions
in the upper troposphere and lower stratosphere. The spectrum has a minimum around k ! 10"2 cycles per
kilometer (cpkm) corresponding to wavelengths of 100 km. For smaller wavenumbers it displays a k"1 range
and for higher wavenumbers, corresponding to mesoscale motions, it grows as k1/3. The two-point corre-
lation of horizontal divergence of horizontal velocity and the associated horizontal spectrum is also con-
structed. The horizontal divergence spectrum is of the same order of magnitude as the vorticity spectrum
in the mesoscale range and show similar inertial range scaling. It is argued that these results show that the
mesoscale motions are not dominated by internal gravity waves. Instead, the author suggests that the
dynamic origin of the k1/3 range is stratified turbulence. However, in contrast to Lilly, the author finds that
stratified turbulence is not a phenomenon associated with an upscale energy cascade, but with a downscale
energy cascade.

1. Introduction

A problem of great theoretical and practical impor-
tance is the dynamic origin of the wavenumber spec-
trum of kinetic energy in the upper troposphere and
lower stratosphere. The spectrum (Vinnichenko 1970;
Nastrom and Gage 1985) displays two regions. In the
mesoscale range, which is wavenumbers corresponding
to wavelengths of the order of 1–100 km, the spectrum
falls off as k"5/3 and for smaller wavenumbers corre-
sponding to longer wavelengths, the spectrum ap-
proaches a k"3 dependence. Until recently, the discus-
sion on the dynamic origin of the spectrum has been
confined to a rather limited group of theoretically ori-
ented dynamicists. However, as the resolving capacity
of numerical models has dramatically increased during
the last 10 years and the horizontal scale of resolution is
entering into the mesoscale range, the problem has also
become a matter of practical concern. What causes the
spectrum to bend off from the k"3 dependence to the
less step k"5/3 dependence? What is the nature of the

mesoscale motions producing this transition and how
does the dynamics of these, which in most numerical
models still are very poorly resolved, influence the dy-
namics of the resolved motions? To develop efficient
subgrid models and accurately optimize resolution, it
has become more relevant to ask these questions. As a
matter of fact, it has also been demonstrated (Koshyk
and Hamilton 2001; Skamarock 2004; Kitamura and
Matsuda 2006) that highly resolved numerical models
are actually capable of reproducing the transition from
a k"3 to a k"5/3 spectrum range.

The rather limited k"3 range at larger scales is con-
sistent with the theory of quasigeostrophic turbulence
of Charney (1971), which explains this spectrum range
as arising from a downscale cascade of potential enstro-
phy, defined as half of the squared potential vorticity.
Although this theory is quite simplified, there is no
reason to believe that it should not catch the essentials
of the dynamics behind the k"3 spectrum range. It has
also been demonstrated (e.g., Tung and Orlando 2003)
that quasigeostrophic numerical models reproduce this
spectrum range reasonably well. In this paper, we will
not question this interpretation, but focus on the dy-
namic origin of the k"5/3 range.

Two completely different hypotheses have been pro-
posed to explain this spectrum range: the quasi-two-
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