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Problems
How do baroclinic eddies in the atmosphere and ocean equilibrate? What determines
their ultimate magnitude and scale?

• A problem in geostrophic turbulence (‘macro turbulence’).

• Equilibration theories fall into a few general camps, which may each be idealized
limits of what occurs in various parameter regimes.

– Cascades within quasi-geostrophic turbulence (Rhines, Salmon, Larichev &
Held, Simmons and Hoskins, implicitly).

– Baroclinic adjustment and its relatives (Rhines and Young, Stone and colleagues,
Schneider and Walker).

– Important role of convection (Juckes).

• Each implies different role for beta, friction, stratification, etc.

Discuss and test numerically in idealized model and domains.



Baroclinic Adjustment
Three arguments

• Stone (1982). Essentially proposed that baroclinic eddies were so efficient in
transferring heat polewards and upwards that the mean state of the atmosphere
would become essentially neutral, or marginally supercritical, to baroclinic instability.

• Somewhat related to the idea that a fluid would homogenize its potential vorticity
(Prandtl-Batchelor, Rhines & Young, 1982). Homogenization follows if PV is diffused
downgradient, and there are no interior sources. NB: homogenization is not needed
for stability. Role of surface temperature gradient?

• Schneider and Walker (2007) proposed a related but different argument, not based
on PV homogenization, but still based on PV diffusion in the interior and
temperature diffusion at the surface. A mass conservation argument leads to very
similar predictions (i.e., marginal supercriticality), but the basis of the argument
differs.



Critical Shear
No critical shear in the continuously stratified problem, but in two-layers
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If Kuo scale is bigger than the deformation scale, then there is instability.

Supercriticality and PV
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For PV to change sign, get (1). At marginal criticality lower-layer PV gradient is zero.

Comments

• No a priori knowledge about how the system might evolve toward marginal
supercriticality. The shear and the deformation radius can change.

• Deformation scale is imposed in QG models, but is free to evolve in PE models.

• If the Kuo scale equals the Rhines scale, then marginal supercriticality implies no
inverse cascade in the barotropic mode.



Numerical Tests
Numerical experiments with quasi-geostrophic models generally do not support the idea
of baroclinic adjustment.

Vallis 1988
TIME

However, the shear is the same order of magnitude as the critical shear.



Observations
Isentropic slope

Using thermal wind (f ∂u/∂z = ∂b/∂y , where b is buoyancy (aka ‘temperature’), a critical
shear implies an isentropic slope:
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f

at marginal supercriticality. On the sphere β and f are not independent, and this result
implies

s ∼ H
a

where a is the radius of the earth. Implications are:

• Isentropic slope is fixed, independent of season.

• If H is the height of the troposphere, an isentrope will move from the equator to the
pole over the depth of the troposphere.

This is very roughly satisfied in Earth’s atmosphere (Stone and Nemet 1996), but variations
are large.



Atmosphere vs Ocean
Atmosphere: the eddy scale (few thousand km) is comparable to, and a little larger than,

the deformation scale (thousand km). There is no demonstrable inverse cascade
(certainly no −5/3 range).

— Is this simply because the deformation scale is so large, so no ‘room’ for it?

Ocean: eddy scale (O(100 km) or a bit more) is significantly larger than the deformation
scale (O(10 km) or a bit more). According to Stammer, the eddy scale is the beta
scale, and not the deformation scale, implying they scale differently. The beta scale is
both bigger than, and has a different latitudinal variation than, the deformation scale.
(Rob Scott and Dudley Chelton may have more recent observations and
interpretations.)

Possibilities

• Same equilibration mechanisms hold in atmosphere and ocean, but deformation
radius is so large in atmosphere that no inverse cascade is possible.

• Baroclinic adjustment holds in atmosphere but not in ocean. In ocean there is some
form of inverse cascade.

— Ocean is different because it is not eddy dominated?

— Ocean is different because it is on the f -plane?

— Ocean is different because the forcing is different?



Quasi-geostrophic turbulence
Using QG theory and phenomenology we can build a picture of baroclinic turbulence in a
simple, homogeneous case. (Salmon)

wind or solar input

baroclinic energy

loss to boundary layer friction

barotropic energy

scattering into

3D turbulence
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Two layer QG equations are, in modal form:
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Quasi-geostrophic Turbulence
Approximations for large scales (with β = 0 for now):
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∂τ
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d D[τ].

So that:

• Forward cascade of baroclinic energy.

• At deformation scales the barotropic mode is forced by the baroclinic mode, and a
cascade to large scales is expected.

• The cascade halts at the beta (Rhines) scale, or a frictional scale.

• If the beta scale is no larger than the deformation scale, then there will be no inverse
cascade — the flow will be marginally supercritical in some sense.



Scaling
Barotropic and baroclinic energy spectrum wavenumber (Larichev and Held 1995)
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so that, if energy is equipartioned between barotropic and baroclinic, at large scales k0
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Then, if τ ∼ U/k0 then ψ ∼ kdU/k2
0 and the barotropic rms velocity scales like:

Urms ∼ U
kd
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The barotropic rms velocity scales like the mean shear, multiplied by the ratio of the
deformation scale to the inverse cascade halting scale.
Atmosphere: k0 ∼ kd
Ocean: kd � k0. Eddy KE much larger than the mean KE.

Rhines Scale

Rhines scale is kβ =
√
β/Urms. So that length of inverse cascade is, roughly,
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Consequences
• Barotropic energy:

Urms ∼
k2
dU

2

β
So eddy KE increases rapidly with the mean shear, and with the deformation
wavenumber.

• If kd is big (small deformation radius) there is a long inverse cascade, and lots of eddy
KE.

• If kd ∼ kkuo then there is no inverse cascade (supercriticality gives an inverse
cascade).

• Eddy diffusivity:

κ ∼ U3k3
d

β2

increases with shear, decreases with β.

Bottom line: Potential for large inverse cascade if deformation radius is smaller than the
halting scale (i.e., the beta scale or the frictional scale). That is, if supercriticality is large, so
if:

S =
k2
dΔU

β
� 1.

These are all ‘external’ parameters in a QG model.



Numerical Tests
Numerical tests with a QG model are in qualitative, but not quantitative, agreement with
these predictions.

They show:

1. Eddy KE increasing rapidly with imposed mean shear and deformation wavenumber,

2. Eddy scale larger than the deformation scale for large shear and small β.

3. Scalings are not quantitatively satisfied.

In addition:

• Theoretical problems in the use of the Rhines scale as a stopping scale (role of
friction?), and, of course, in the Kolmogorov-Kraichnan phenomenology.

• Vis à vis the real world, quasi-geostrophic theory may be questionable, as the system
might equilibrate in completely different ways.



Numerical Tests From Held and Larichev (1995)

Energy scales and energy levels get larger with supercriticality, as expected. (Arrows
indicate Rhines scale.)



Marginal Supercriticality — A Variation on a Theme
Assumptions Schneider (2004), Schneider and Walker (2007).

1. A ‘two-layer’ atmosphere, comprising a free atmosphere and a surface layer. Net
polewards mass flux in free atmosphere, equatorwards in surface layer.

2. Diffusive flux of PV in free atmosphere, and of buoyancy in surface layer, with the
same coefficient of eddy diffusivity.

3. Mass conservation of residual flow.

Sketch of overturning circulation

 Lower stratosphere

Upper stratosphereTropopause

Troposphere

Isentropes

Surface layer

Equator          Pole



Caricature of Derivation
Statistically steady momentum equation in atmosphere, in TEM (residual) form:
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Using thermal wind this implies the supercriticality condition
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Suggests an isentrope goes from surface to troposphere over course of the extratropics.



Tests
Questions

1. Can we obtain an inverse cascade with a primitive equation model, forced at large
scales?

- Or at least, can we make the eddy scale larger than the deformation scale?

2. Is baroclinic adjustment, in any of its forms, a valid model?

Model

Use 2-level, dry, Boussinesq, primitive equation model in a beta-plane channel with
idealized thermal forcing.

The β and f parameters can be adjusted independently.

Model can in principle allow stratification and/or shear to adjust as needed.

Rayleigh drag plus hyperviscosity.

Compare with QG model with (as far as possible) same parameters, some taken post
facto from PE simulation.

No convective adjustment scheme.



Model Details
• Lx = 30 000 km, Ly = 18,000 km, Δx = Δy = 150 km. H = 10 km.

• Linear equation of state.

• Simple thermodynamic equation:

Dθ/Dt = −(θ − θ∗)/τ

where θ∗ is stably stratified and has sharp meridional variation in midlatitudes.
Specifically, for control experiment,

θ∗ = θ0 + δzθ × (0,1) + δyθ tanh((y − LY/2)/σ)

where δzθ = 40K , δyθ = 60K , τ = 20 days.

• Rayleigh drag in lower layer and biharmonic horizontal diffusion.

• No exact PV conservation, even in unforced, inviscid, adiabatic case.

Model becomes baroclinically unstable, grows eddies, equilibrates. Large scale heat
transport typically stabilizes the flow to vertical convection; some grid-scale convection
away from baroclinic zone.



Mean State, Control Run
Temperature correction
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PE - QG comparison PE: Red. QG: Blue.
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Criticality

Vary horizontal temperature gradient in control

Δyθ

Δzθ

Marginal supercriticality

For a range of forcing parameters, flow is marginally subcritical (but 
likely a little supercritical some of the time)



Criticality

Vary horizontal and vertical temperature gradient (of forcing) in control

Δyθ

Δzθ

Red, change δzθ

Blue, change δyθ

Varying vertical temperature gradient leads to variations in criticality



Criticality

Δyθ

Δzθ

Δyθ

Change f0 and β.

Δyθ increases with f and decreases with β.

Change τ



Contours of Criticality

β

f

δyθ
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Red is supercritical, blue is subcritical

log (S) log (S)



Scales of Motion

M
U

M

CONTROL

 

 

50 100 150 200

20

40

60

80

100

120

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

N
L
 E

D
D

IE
S

 

 

50 100 150 200

20

40

60

80

100

120

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

y
=120 =1

 

 

50 100 150 200

20

40

60

80

100

120

 

 

50 100 150 200

20

40

60

80

100

120

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

Linear
Instability

Equilibrated 
scale

Eddies are bigger than the scale of the instability



Scales of Motion

fo
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β

Eddy scale

Rossby radius

Eddy scale/Rossby radius

Eddy scales decrease as beta and 
f0 increase.

Rossby radius is flat with beta, 
decreases as f0 increases.

Ratio increases as beta falls and 
as f0 increases.



Eddy scales vs criticality
Summary of many experiments. Ratio of eddy scale to deformation scale as a function of criticality. 

Suggests there can be an inverse cascade.  As QG suggests, a bigger inverse cascade for more 
supercritical flow.

Criticality

L/Ld



Eddy KE vs criticality
Barotropic velocity scale as a function of criticality. 

Increasing EKE as criticality increases.

Criticality

Vrms



Barotropization?

Criticality

Eddy flow is more barotropic with increasing criticality, but this seems to saturate. 
Possible effects of friction and domain size,
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Energy Spectra

n = −5/3

Obtain a -5/3 barotropic spectra (inverse cascade) in some but not all simulations.
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Conclusions
The nature of the flow changes continuously with the parameters, and there are parameter
ranges for which the flow is supercritical and a form of inverse cascade exists.

• The model can evolve to a supercritical, turbulent, state, especially for small β.

• The eddy scale increases with the supercriticality, and is larger than the instability
scale.

— Suggests presence of an inverse cascade, and a −5/3 cascade can (sometimes) be
obtained.

• Nonetheless, for finite values of β, there is a range of parameters for which changing
the meridional gradient of the forcing (the radiative equilibrium temperature) does
not significantly change the supercriticality.

• Quasi-geostrophic models seem useful, and give qualitatively good predictions,
provided the stratification is diagnosed from the PE model, or observations. We have no
good theory for stratification. (Some combination of upwards heat transport in
baroclinic waves and convection.)

• The difference in importance of the β effect may explain why the ocean, but not the
atmosphere, appears supercritical.

— Alternatively, the ocean is not eddy dominated to the extent that the atmosphere
is, and stratification may not be determined by baroclinic turbulence.


