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Designing High Accuracy Simulation

Primary issues:
“Frictional” content of the model for 
sub-filter scale stress.
Resolution in the vertical direction.
Mesh aspect ratio.
Numerical algorithm, dealiasing.

Secondary issues:
Lower wall boundary conditions
Other details of SFS closure
Other algorithmic issues
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Different Studies with different SFS Models
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Previous efforts have focused on 
the model for SFS stress.

Eddy viscosity models

− Smagorinsky model

− Moeng 1984, 1-eq model

− Dynamic eddy viscosity model

Non-eddy viscosity models

− Similarity model

− Reconstruction model

− Resolvable sub-filter 
scale model (RSFS)

for Smag:
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Comparing Eddy Viscosity Models: 
Smagorinsky vs. Moeng 84

• SFS eddy viscosity models:
– Smagorinsky
– Moeng 84 one-eq model

• Keep Nz
 
=128

• Change aspect ratio by 
changing horizontal 
mesh size, Nx and Ny.

• The simulations with the 
Smag. and Moeng 84 
SFS models follow 
the same curve in the 

parameter-space.
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Comparing Smagorinsky vs. Moeng 84 
Eddy Viscosity Models

mφ

near 
the HAZ

The placement and predicted mean shear are independent of the SFS model.

mφ

outside 
the HAZ
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Simulations with High Accuracy
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Convergence of LES Over the Entire ABL
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well over the entire ABL
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The Surface Layer
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• Predicted non-dimensional 
mean shear converges well 
in the inertial region.

• However,           when 
κ is assumed to be 0.4

1.2mφ ≈Courtesy Tie Wei for TOY Workshop 2008



9

Predicted von Karman Constant
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• For each simulation, we average 
the predicted        in the lower 
20% of the boundary layer to 
obtain the predicted      so that

• Vary the input roughness 
parameter z0 in the code:

• z0 = 1 cm, 5 cm, 16 cm, 30 cm

*

1z U
u z
κ ∂

=
∂

%

mφ

κ%

0*

1 logU z
zu κ

=
%

Courtesy Tie Wei for TOY Workshop 2008



10

Predicted von Karman Constant
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⇒ LES predicts von Karman 
constant κ ≈ 0.33 (!?)

0.33

(the simulations are all in the HAZ)

least squares fit
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Equation at the first (u,v) level

Finite difference representation:

Surface Stress Boundary Conditions
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Surface Stress Boundary Condition 

There are two parts to the lower BC:
Part 1: define displacement of surface layer with z0

Part 2: add fluctuations to lower wall shear stress
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Models for Surface Stress

- Schumann-Grotzbach (SG) 
model (1975)

- Piomelli et al. (1989) 
shifted SG model

- Xie et al. (2004)

- Moeng/Wyngaard 
(1984) - nonlinear
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Note: In all models, the fluctuations in wall shear stress are assumed 
to be correlated with the streamwise velocity fluctuations at first grid level 
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Effect of Wall Stress Boundary Condition

Removing Fluctuations 
in Wall Shear Stress:

•
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Instability is reduced by 
removing fluctuations in 
wall shear stress.

The simulation moves 
farther into the high-
accuracy zone.
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SFS
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Conclusions

To achieve high accuracy in the near surface region, 
LES needs to be moved into in the high accuracy zone 
of the parameter space, regardless of the SFS model.

The von Karman constant predicted by eddy viscosity 
models in HAZ is about 0.33.

The lower wall boundary conditions becomes important 
when the LES is in the HAZ. 

Instability at the first grid level is improved by 
removing the fluctuations in the lower wall BC.

We are exploring interaction between fluctuations in the 
lower boundary conditions and details of different 
SFS models on the accuracy of LES when in the HAZ.
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