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scaling zone E!k; t" increases with time but E!k; t" de-
creases with time for k close (but inferior) to kth!t".

The traditionally expected [5,12] asymptotic dynamics
of the system is to reach an absolute equilibrium, which is a
statistically stationary exact solution of the truncated Euler
equations, with energy spectrum E!k" # ck2. Our new
results (see Fig. 1) show that a time-dependent statistical
equilibrium appears long before the system reaches its
stationary state. Indeed, the early appearance of a k2

zone is the key factor in the relaxation of the system
towards the absolute equilibrium: as time increases, more
and more modes gather into a time-dependent statistical
equilibrium, which itself tends towards an absolute
equilibrium.

Since the total energy E is constant, the energy dissi-
pated from large scales into the time-dependent statistical
equilibrium is given by

Eth!t" #
X

kth!t"<k

E!k; t": (4)

The time evolutions of kth and Eth are presented in Fig. 2.
The figure clearly displays the long transient during which,
for all resolutions, kth decreases and Eth increases with
time. Note that, at all times, kth increases and Eth decreases
with the resolution.

Since the energy of the time-dependent equilibrium
increases with time, the modes outside the equilibrium

lose energy. The presence of a time-dependent equilibrium
thus induces an effective dissipation on the lower k modes.

We now estimate the characteristic time of effective
dissipation !!kd" of modes kd close to kth!t" by assuming
time-scale separation and studying, at each time t, the
relaxation towards the time-independent absolute equilib-
rium characterized by Eth!t" and kmax. The existence of a
fluctuation dissipation theorem (FDT) [13,14] ensures than
dissipation around the equilibrium has the same character-
istic time scale as the equilibrium correlation functions
hv̂"!k; t"v̂#!k0; 0"i [brackets denote equilibrium statistical
averaging over initial conditions v̂#!k0; 0"]. Defining this
time scale !C as the parabolic decorrelation time

!2C@tthv̂"!k; t"v̂#!k0; 0"ijt#0 # hv̂"!k; 0"v̂#!k0; 0"i; (5)

time translation invariance allows one to express the
second-order time derivative as $h@tv̂"!k; t" %
@t0 v̂#!k0; t0"ijt#t0#0. Using expression (1) for the time de-
rivatives reduces the evaluation of !C to that of an equal-
time fourth-order moment of a Gaussian field with corre-
lation hv̂"!k; t"v̂#!$k; t"i # AP"#!k" [5] where A #
Eth=!2kmax"3. The only nonvanishing contribution is a
one loop graph [8,15]. The correlation time !C associated
with wave number k is found in this way [14] to obey the
simple scaling law

!C # C
k

!!!!!!!
Eth

p ; (6)

where C # 1:433 82 is a constant of order unity. The time
scale !C is the eddy turnover time at wave number kth.
Because of Kolmogorov (K41) behavior (see below) the
evolution of Eth is governed by the large-eddy turnover
time. The assumption of time-scale separation made above
is thus consistent.

This strongly suggests the introduction of an effective
generalized Navier-Stokes model for the dissipative dy-
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FIG. 2 (color online). Time evolution of kth (left vertical axis)
and Eth (right vertical axis) at resolutions 2563 (circle &), 5123

(triangle 4), 10243 (cross %), and 16003 (cross +).
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FIG. 1 (color online). Energy spectra. Top: resolution 16003 at
t # !6:5; 8; 10; 14" (!, +, &, *); bottom: resolutions 2563 (circle
&), 5123 (triangle 4), 10243 (cross %), and 16003 (cross +) at
t # 8. The dashed lines indicate k$5=3 and k2 scalings.
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Eddy-Damped Quasi-Normal Markovian 
spectrum

“QN” --- Chou(1940), Millionshtchikov(1941): realizability problem

“N” --- Lee (1952), Hopf(1952): statistics of absolute equilibria of truncated Euler

DIA (Kraichnan): tractability problem

“ED”, “M” --- Orszag(1970, 1977)

(
∂
∂t + 2νk2

)
E(k, t) =∫∫

!k
dpdqθkpqb(k, p, q) k

pq E(q, t)
[
k2E(p, t)− p2E(k, t)

]



Galerkin truncation, hyperviscosity and 
bottleneck for EDQNM

Bos and Bertoglio
(2006)

Anything 
else?

YES!:
secondary
bottleneck

and 
even more:
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Hyperviscous EDQNM:
convergence to Galerkin truncation and secondary bottleneck ...
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Conclusions and perspectives

• Hyperviscous EDQNM converges to 
Galerkin truncation;

• Secondary bottleneck.

• Dynamics/Mechanics, Flow Structures ...... 

• Statistics: intermittency, Fermi-Pasta-Ulam-
Tsingou problem and all that ......
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Comparison of Truncated 3D Euler Energy Spectra
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Figure 2.2.1.2: Comparison the evolutions of two spectra starting with zero mean
helicity (ZMH) and pure-helical waves (PHWs). Black solid lines designate the
initial spectra, and the magenta dash dot lines the first stage evolution, while the
red dashed ones the second stage and the blue solid ones correspond to the third
stage. The bold red dashed straight lines present the k2 spectra, the absolute equi-
librium spectrum without helicity.

sation” since now it is caused by helicity, which is antisymmetric, without “Pauli
Principle” to exclude the “particles” to be in the “degenerate states” with the same
“energy” (wave vectors of the same module).

We apply“kicking” strategy of injecting helicity withut changing energy also
to the simulation of hyperviscous Navier-Stokes equations as shown in Fig. 2.2.2.5.
We see that helicity effect is also very pronounced.

3 EDQNM
Without considering the helicity, the eddy-damped quasi-normal Markovian(EDQNM)
equation for three-dimensional kinetic-energy spectrum dynamics reads
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