Transition in energy spectrum for forced stratified turbulence

Yoshifumi Kimura

Graduate School of Mathematics, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8602, JAPAN

Energy spectrum for forced stably stratified turbulence is investigated numerically. The 3D Navier-Stokes equations under the Boussinesq approximation,

$$(\partial_t - \nu \nabla^2) \mathbf{u} = -\mathbf{u} \cdot \nabla \mathbf{u} - \nabla p + \theta \hat{\mathbf{z}}$$
⁽¹⁾

$$(\partial_t - \kappa \nabla^2)\theta = -N^2 w - \mathbf{u} \cdot \nabla \theta \tag{2}$$

$$\nabla \cdot \mathbf{u} = 0 \tag{3}$$

are solved pseudo-spectrally with stochastic forcing applied to the largest velocity scales. Following Lesieur & Rogallo (1989) and Carnevale *et. al.*(2001), spectral eddy viscosity, $\nu_t(k) = (a_1+a_2 \exp(-a_3k_c/k))\sqrt{E(k_c)/k_c}$, is used for small scale dissipation. Using toroidal-poloidal decomposition (Craya-Herring decomposition), the velocity field is divided into the vortex mode (ϕ_1) and the wave mode (ϕ_2) . With the initial kinetic energy being zero, the ϕ_1 spectra as a function of horizontal wave numbers, k_{\perp} , first develops a k_{\perp}^{-3} spectra for the whole k_{\perp} range, and then $k_{\perp}^{-5/3}$ part appears at large k_{\perp} with rather a sharp transition wave number. Meanwhile the ϕ_2 spectra shows k_{\perp}^{-2} first, and then $k_{\perp}^{-5/3}$ part appears with the same transition wave number.

Figure 1 shows $\phi_1(\text{left})$ and $\phi_2(\text{right})$ spectra for $N^2 = 1, 10, 50, 100$ (from the top to the bottom). The transition is clearly observed for both cases, and the transition point depends on the value of N. According to Carnevale *et. al.*, the transition wave number is understood as the Ozmidov scale with a correction by the coefficients of the buoyancy spectrum, $E(k) = \alpha N^2 k^{-3}$, and the Kolmogorov spectrum, $E(k) = C_K \epsilon^{2/3} k^{-5/3}$. By equating these spectra, $k_b \sim (\alpha/C_K)^{3/4} \sqrt{N^3/\epsilon}$ is obtained for the transition wavenumber.

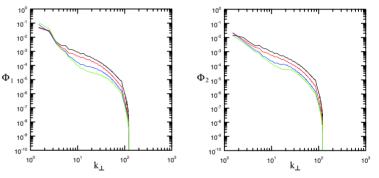


Figure 1: ϕ_1 (left) and ϕ_2 (right) spectra as a function of k_{\perp} for $N^2 = 1, 10, 50, 100$

Our calculation shows, however, that the ϕ_1 spectra at small k_{\perp} seem to have the same slope irrespective of N, which implies a possibility of a different mechanism for producing the k_{\perp}^{-3} spectrum, perhaps the k_{\perp}^{-3} spectrum of two-dimensional turbulence.

References

- [1] Carnevale, G.F. et. al: 2001 J. Fluid Mech. 427 205–239.
- [2] Lesieur, M. & Rogallo, R. 1989 Phys. Fluids A1 718–722.