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RBF idea, In

pictures:
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1970 Invention of RBFs (for application in cartography)

Some other key dates:

1940 Unconditional non-singularity for many types of radial functions

1984 Unconditional non-singularity for multiquadrics (¢(r) = /1 +(er)?)

1990 First application to numerical solutions of PDEs

2002 Flat RBF limit exists - generalizes all 'classical' pseudospectral methods
2004 First numerically stable algorithm in flat basis function limit

2007 First application of RBFs to geophysical test problems on a sphere
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RBF idea, In formulas:

N

Given scattered data (x«, fi), k=1, 2, ..., N, the coefficients 1, in s(X) = > ik d(lIx=x,ID
k=1

are found by collocation: s(x ) =fc, k=1,2,...,N:

Key theorems:

Main present issues:
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For 'most' ¢(r), this system can never be singular.
Spectral accuracy for smooth radial functions

Defeat numerical ill-conditioning

Reduce the computational cost

Most immediate algorithms (RBF-Direct):
Solve system above for Ag: O(N?®) operations
Evaluate interpolant at M locations: O(M N) operations
Applying approximation of space derivatives: O(N?) operations

Develop fast and scalable codes for large-scale parallel computers
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Moving Vortices on A Sphere
(Flyer and Lehto, 2008)

: . oh_ oh _ _(_u()
Method of lines formulation: ot ——(g(a,H,(p,t) ov)h = ot _—(COSHDK, +v(t)Dﬁ,)h

D{ and DY, are discrete RBF differentiation matrices:

Free of Pole Singularities
- Error Invariant of a, angle of rotation

Inverse Multiquadrics RBFs; 12 Day Simulation
N =3136 nodes
At =20 minutes; 4™ order Runge-Kutta
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Final Solution and Magnitude of Error
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Comparison With Other Methods

Method Resolution At (mins.) 01 0o
With local node refinement
RBF [1] N = 3136 20 4.107 8-10°°
Finite Volume AMR [2] Base 5°; Variable 2.1073 2-.1073
3 level adaptive
With uniform node distribution
RBF [1] N = 3136, 6.4° 80 3-10°3 4.10°3
Finite Volume [2] 0.625° 10 5.107 2-10°3
Discontinuous Galerkin [2] N = 9600 6 2.1073 7-1073
Semi-Lagrangian [2] N = 10512 60 4.107? 5.1072
References:
[  Flyer, N.and Lehto, E., A radial basis function implementation of local node refinement: Two vortex test cases on a sphere, to be submitted to

Mon. Wea. Rev.

[2] Nair, R.D. and Jablonowski, C., Moving vortices on the sphere: A test case for horizontal advection problems, Mon. Wea. Rev. 136 (2008), 699-711.

2008 NCAR Theme Of The Year

Slide 6 of 19



Full Nonlinear Unsteady Shallow Water Equations
(Flyer and Wright, 2008)

Description:  Forcing terms added to the shallow water equations to generate a flow that
mimics a short wave trough embedded in a westerly jet

N=3136
At =10 minutes
RK4 time-stepping; 5 day run

Geopotential height, 50m contour intervals |Exact-Numerical| Error

710

(White<10'5)
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Comparison with Other Methods

Method Number of Time step |Relative |;
grid points errorin h
RBF [1] 748 (28%) 20 minutes 4.96 - 10!

1849 (43?) 12 minutes 3.47 -10°7
3136 (56%) 10 minutes 8.91-10°°
4096 (64°) 8 minutes 2.57 - 10
5041 (71°) 6 minutes 3.84-10°
Spherical Harmonics [2] 8192 (T42) 20 minutes’ 2 -10°7

Double Fourier [3] 2048 6 minutes 3.9 -10"
8192 3 minutes 8.2-10°73

Spectral Elements [4] 6144 90 seconds 6.5-10°3
24576 A5 seconds 4 -10°

’ semi-implicit time stepping

References:

[1] Flyer, N. and Wright, G.B., Solving the shallow water equations on a sphere using radial basis functions, to be submitted to JCP.

[2] Jacob-Chien, R., Hack, J.J. and Williamson, D.L., Spectral transform solutions to the shallow water test set, JCP 119 (1995), 164-187.

[3] Spotz, W.F., Taylor, M.A. and Swarztrauber, P.N., Fast shallow water equation solvers in latutude-longitude coordinates, JCP 145 (1998), 432-444.

[4] Taylor, M., Tribbia, J. and Iskadrarani, M., The spectral element method for the shallow water equations on the sphere, JCP 130 (1997), 92-108.
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Numerical conditioning, and the flat RBF limit (¢ - 0)

Classical basis functions are usually RBFs are translates of one
. . . . — 2
highly oscillatory single function - here ¢(r) = e~¢"
100 0_5: /\
40 8 = 10 q‘l —D‘.B -0‘.6 -D‘.4 -0.2 C‘] 0.2 0.‘4 DTB 0.‘8 1
20 "l ]
E = l cz1 -O‘.B -0‘.6 -0‘.4 -0{2 EJ 0.‘2 0.‘4 016 0.‘8 1
1 n -1
_- 8 = 01 q‘l —D‘.B -0‘.6 -D‘.4 -0!2 C‘] D.‘2 0.‘4 0!6 0.‘8 1
1T 05 0 o5 1 4 05 0 05 ; 15
Legendre Chebyshev 0_;7
8 = 001 q1 -O‘.B -0‘.6 -0‘.4 -0!2 E‘J O.‘Z O.‘4 0!6 O.‘B 1

Condition number of RBF matrix O(¢™*(M)); Exact values are available for a(N):
(Fornberg and Zuev, 2007)

a(n) a(n) a(n)
1-D (non-periodic) | n =10 18 n=1¢ 198 n=1¢ 1,998
2-D (non-periodic) | n=1C 26 n=10 280 n=10¢ 2,826
3-D (non-periodic) | n=1C 34 n=1C¢ 360 n=1¢ 3,632
Resolves in eachl about 5 modes| about 50 modeq about 500 modas
direction
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Why are flat (or near-flat) RBFs interesting?
- Intriguing error trends as € - O
‘Toy-problem' example: 41 node MQ interpolation of f(x;,x,) =

59
67+ (x1+3)7+(xo -
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-  RBF interpolant in 1-D reduces to Lagrange's interpolation polynomial
(Driscoll and Fornberg, 2002)

- In any number of dimensions, the € - 0 limit reduces to 'classical' PS methods
If used on tensor type grids.

- The RBF approach generalize PS methods in many ways:
- Guaranteed nonsingular also for scattered nodes on irregular geometries

- Allow spectral accuracy to be combined with mesh refinement
- Best accuracy often obtained not in the € - 0 limit, but for larger &.

Solving A/ =f followed by evaluating s(x,¢) = Z::'Zl Ak P((1X =%, )
Is merely an unstable algorithm for a stable problem
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Solving A/ =f followed by evaluating s(x,¢) = Z::Ll Ak d(1X =%, )
Is merely an unstable algorithm for a stable problem

Numerical computations for small values of €

- High precision arithmetic It is known exactly how the condition number varies with domain
type, N, € . Approach often costly.

- Algorithms that completely bypass ill-conditioning all the way into € -~ 0 limit,
while using only standard precision arithmetic:
Find a computational path from f to s(x,€) that does not go via the ill-conditioned A.

- Contour-Padé algorithm  First algorithm of its kind; established that concept is possible;
limited to relatively small N-values (Fornberg and Wright, 2004)
Simplified version Contour-SVD under development.

- RBF-QR method So far developed only for nodes scattered over the surface

of a sphere (Fornberg and Piret, 2007).
No limit on N; cost about five times that of RBF-Direct (even as

€-0).

Probably many more genuinely stable algorithms to come...
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Backaground to RBF-QR for spheres: Spherical Harmonics (SPH)

Spherical harmonics: Restriction to surface of unit sphere of simple polynomials in x, y, z:

V=
-2 -1 0 1 2
1
H=0 27 L
Y3032 ! HEy R -1 [E
2 Saxy  —3fhmzy $3@2-1) -3/max /¢ -y?)
YE(X) vE-4 y=-3 y=-2 y=-1 y=0 v=1 y=2 v=3 v=4§
- Counterpart to Fourier modes u=0 .
around periphery of unit circle
- Orthogonal

r

Uniform resolution over surface =1 ( v )
Spectral accuracy for PDEs |
& f OCe2D
- Not associated with any e

particular node set 8 O o ‘ '.O Om\
- No clear counterpart to FFT — -
- No opportunities for variable

FOQCEESLAD
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Expansions of RBFs in terms of SPH

RBFs, centered on the surface of the unit sphere, can be expanded in SPH as follows:

0 w !
pllx=xID=% 3 e Yiex)] Vit
where, for example o1
—2n(232+1+(/4+%)«/1+432)( 5 ) #r
. —_ 2 —
QA =Viren K S
2u+l
. — 1 — _4n 2
IMQ: A(r) = JI+(@En? Cue = (,¢+%)(1+J4827+1)

Key points of the RBF-QR algorithm (Fornberg and Piret, 2007):

There is no loss of accuracy in computing ¢, Y;(x), evenif ¢>0.

- The factors ¢%“ contain all the ill-conditioning, and they can be analytically kept out of
the numerical algorithm in going from data values to interpolant values.

- Algorithm involves, among other steps, a QR factorization.

- The algorithm proves that, as € —» 0, the RBF interpolant (usually) converges to the
SPH interpolant
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Test case for interpolation

Test function:

1849 minimal energy nodes Error: RBF-Direct vs. RBF-OR

f(x) = e_7(X+%)2‘8(Y+%)2—9(z—%)2

Near uniform node locations

~ \
\_/ /v/

0 RBF-Direct \

RBF-Direct: cond(A) = O(€ ®%); each 16 extra decimal digits of arithmetic precision lowers the
onset of ill-conditioning by a factor of 0.65 for «.

Since RBF ¢ - 0 limit agrees with the SPH interpolant, why not just use the latter?

- The error often increases in the last stages of € - 0

The SPH interpolant can be singular for certain node distributions - the RBF interpolant
can never be singular

- RBFs offer opportunities for local node refinement
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Long time integration of convective flow over a sphere
(Fornberg and Piret, 2008) - follow-up on shorter-time integration with GA and RBF-Direct by Flyer and Wright (2007)

'‘Unrolled' spherical coordinate system Initial condition: Cosine bell, discretized at
n = 1849 'minimal energy' nodes

t=10,000
One full rotation corresponds to t =21 :
TPS

107 ey m b e

Some observations: F W

—————————————————————

- Smooth global RBF types give almost
identical results once € is small enough. 10F W6

|error]

- Smooth RBFs important even if the

convected solution is not smooth. mal
0 _:- :,4{"? GA
- Robust results require € some two orders .. I S
of magnitude below what RBF-Direct
provides. o . | .
107 10 107 0° 10°
£
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Error evolution up to time t = 10,000
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Error for smooth RBF types does not increase with time (no trailing dispersive wake)
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Operation counts for the RBFE-Direct algorithm

Three main tasks (in case of RBF-Direct):

1. Givendata (X, f), k=1,2, .., N, solve linear systems
Pk, =%, D (i, =%, 10 - ke =% D |[ 4, f,

Pk, =% 1D (i, =x,ID - Ak, =X _| O(N?) operations

LAk =X, 0D @k =X, 0D - @k, =% D L An f
N
2. Given Ak, evaluate s(x) = kZ Ak ¢(|Ix =X, |) at M different locations. O(M N) operations
=1

3. Perform matrix - vector multiplications | Lu |= D u |. O(N?) operations

All steps of very simple 'structure' (quite straightforward parallelization), but:
A wealth of opportunities are available for algorithms which both:

- reduce operation count
- reduce memory requirement
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Fast RBF algorithms in cases of large €

Surveyed for ex. in Fasshauer: Meshfree Approximation Methods with Matlab (World Scientific, 2007)

Non-uniform Fast Fourier Transform

Fast multipole method

Fast tree codes

Domain decomposition methods

Krylov-type iterations

Fast Gauss transform

The BFGP algorithm

Sparse matrix approaches based on compact RBFs

???7?7°7?7? (more algorithms are bound to be discovered)

- ONOGORWNE

Stable RBF algorithms in cases of small €

1. Contour-Padeé Severe limitation on number of nodes (N <20 in 1-D, N <200 in 2-D)
2. RBF-QR Works for thousands of nodes on the sphere
???7?7°7?7? (more algorithms are bound to be discovered)

Challenge: Find an algorithm that combines high speed with numerically stability

RBE-generated Finite Differences (FD)

- Resolves cost and conditioning issues

- All approximations 'local' - much less message passing in parallel computing environments
but

- Algebraic instead of spectral accuracy
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Conclusions

Established:

- RBFs can be seen as a generalization of PS methods to arbitrarily shaped domains.
- RBFs can offer excellent accuracy also over very long integration times.

- The near-flat basis function regime (¢ small) is found to be of particular interest, and
the first genuinely stable numerical algorithms for this case are emerging.

- Atfter ill-conditioning has been eliminated, the next accuracy-limiting factor has been
identified (found to be related to the polynomial Runge phenomenon).

- Many types of fast algorithms exist - however so far only for large «.

Current research issues:

- Compare RBFs against alternative methods for standard test problems.
- Explore further the combination of spectral accuracy with local node refinement.

- Find RBF algorithms that combine high speed with numerical stability (for small €).
- Develop further the concept of RBF-generated FD formulas.

If you had access to a peta-scale computing system, what would you do with it?
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