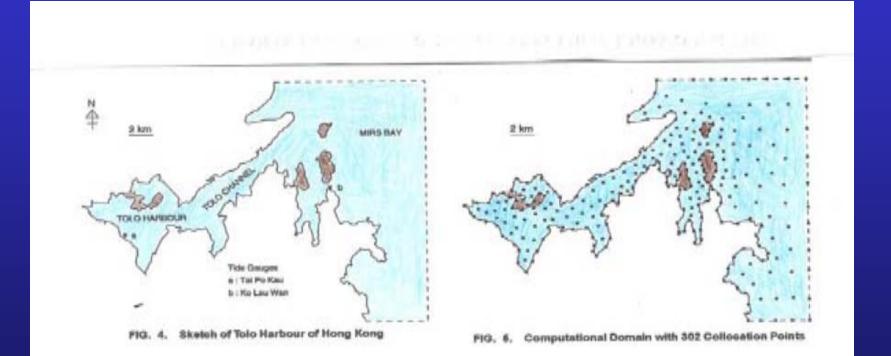
New Developments in Radial Basis Function Implementation

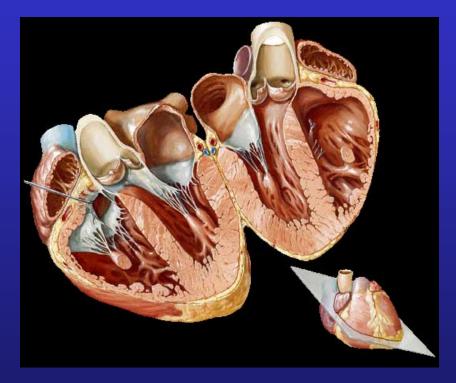
Edward J. Kansa

Convergent Solutions and University of California, Davis

Meshless RBFs model irregular domains



Examples of difficult meshing problems



Human Heart

Refinery Heat exchanger

Topics of implementation interest

- Convergence theory and implementation
- Poor conditioning of systems of equations
- Optimal discretization
- Domain decomposition & preconditioners
- Better solvers-Improved truncated-SVD
- High precision arithmetic
- Variable shape parameters
- Front tracking examples

H-scheme and c-scheme combined: PDEs and boundary conditions

- MQ is a prewavelet (Buhmann & Chui)
- Write MQ as $\phi_i(\mathbf{X}) = [1 + {(\mathbf{X} \mathbf{X}_i)/c_i}^2]^{\beta}$

- x_j is the translator
 c_j is the dilator, and
 [1 +{(x-x_j)/c_j}²] ^β is rotationally invariant.
- β influences the shape of $\phi_i(\mathbf{X})$.
- MQ cannot be a prewavelet if c_i is uniformly constant. In addition, the rows of the coefficient matrix are nearly identical.

Theoretical convergence and implementation

- Maych (1992) showed MQ interpolation and derivative estimates converge as:
- $O(\lambda^{\mu |m|})$ where $0 < \lambda < 1$, $\mu = (c/h)$, and m is the order of differentiation,
- $D^m = \{\partial^{m1}\partial^{m2}...\partial^{mk}\}/\{\partial x_1^{m1}\partial x_2^{m2}...\partial x_k^{mk}\},\$
- $h = \sup_{i,j} ||x_i x_j||$
- Higher order differentiation lessens the convergence rate, and integration increases the convergence rate.

Goal: Obtain the best accuracy with minimal CPU time

- For convergence, we want $\mu = (c/h) \rightarrow \infty$.
- The h-scheme: refine h, keep c fixed.
- The c-scheme: increase c, keep h small.
- The c-scheme is ideal and most efficient, but can be quite ill-conditioned.

Schaback's trade-off principle

- Compactly supported well conditioned schemes converge very slowly.
- Wide-band width schemes that converge at exponential rates are very often very ill-conditioned.

Ill-conditioning can sometimes yield very accurate solutions: $A \alpha = b$

- Let σ be the singular values of A.
- $\kappa_{abs} = \max(\sigma)/\min(\sigma) = || A || \cdot || A^{-1} ||,$
- $\kappa_{\text{rel}} = ((|| \land \sigma ||)/(|| \sigma ||)) \cdot || \land^{-1} ||,$
- Often $\kappa_{rel} << \kappa_{abs}$, but not always.

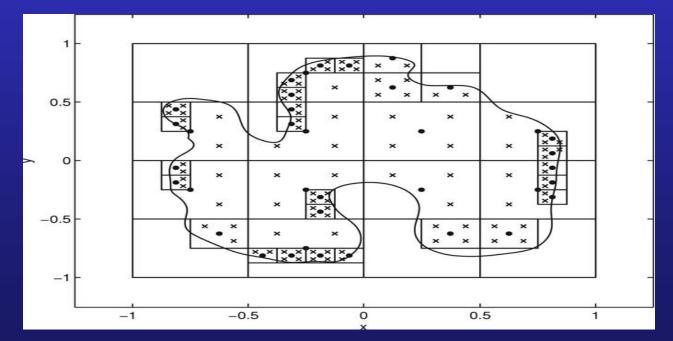
Recommend h-scheme practices

- Brute force fine h discretization is a throwback to mesh-based FDM,FEM, or FVM.
- High gradient regions require fine h and flatter regions require coarse h.
- The local length scale is: l = k |U|/ |∇U| ,U is the unknown dependent variable, k is a constant.
- Implementation: adaptive, multi-level local refinement are standard well-known tools.

H-scheme approach-1

T.A. Driscoll, A.R.H. Heryudono / Comput Math with Appl 53 (2007)

Use quad-tree refinement to reduce residual errors



h-scheme approach-Greedy Algorithm-2

Ling, Hon, Schaback

- Use large set of trial centers and test points
- Find trial points with largest residual error, and keep point.
- Build set of trial points with largest residual, continue until largest residual < tolerance. Build equation system one at a time, very fast.
- For many PDEs on irregular domains, about 80 -150 points are needed to be within tolerance.

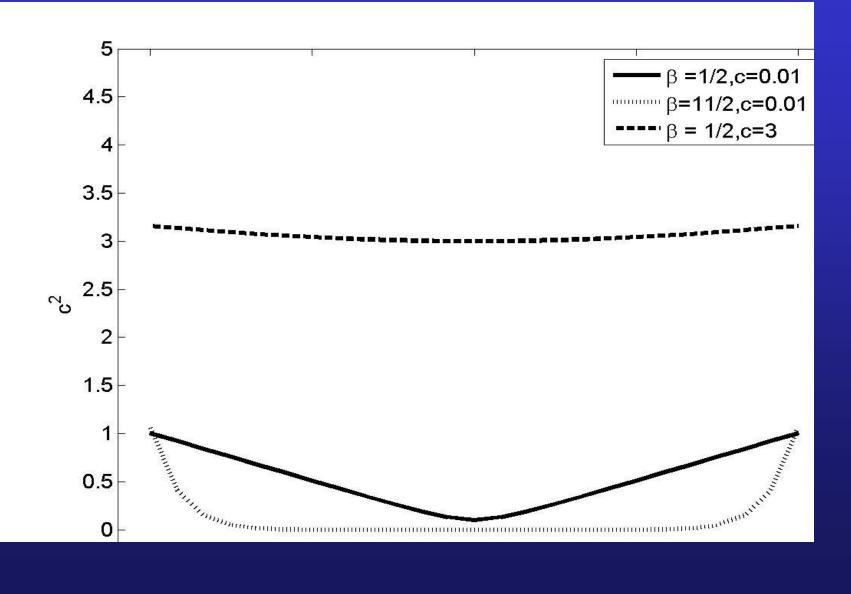
Domain decomposition: Divide and Conquer for the h-scheme-3

- Domain Decomposition: Parallel multilevel methods for elliptic PDEs (Smith, Bjorsted,Gropp) FEM
- Use overlapping or non-overlapping sub-domains
- For overlapping sub-domains, additive alternating Schwarz is fast, yields continuity of function and normal gradient.
- Smaller problems are better conditioned.
- Non overlapping methods yield higher continuity.
- Parallelization demonstrated by Ingber et al. for RBFs in 3D.

MQ shape is controlled by either c_j^2 or exponent, β

- φ_j should be "flat" near the data center,
 x_i.
- Recommend using ½ integers β =3/2, 5/2, or 7/2; one can obtain analytic integrals for φ_j.
- Increasing c_j^2 makes ϕ_j "flatter".

Plots of 3 different MQ RBFs



FEM relies on preconditioners for large scale simulations.

- Ill-conditioning can exist for RBFs PDE methods.
- Ling-Kansa published 3 papers with approximate cardinal preconditioners reducing the condition numbers by O(10⁶)

H-scheme loss of accuracy at boundaries

- There are several reasons for loss of accuracy:
- 1. Differentiation reduces convergence rates.
- 2. Specification of Dirichlet, Neumann, and ∇^2 operators operate on different scales.

The c-scheme: advantages and disadvantages

- The c-scheme is very computationally efficient
- Unlike low order methods, the C^{∞} requires 100 1000 less resolution
- The disadvantage is the equation system becomes rapidly poorly-conditioned.

Improved truncated-SVD for large c_i

- Volokh-Vilnay (2000) showed that the truncated SVD behaves poorly because the small singular values are discarded.
- They project the right and left matrices associated with small singular values into the null space to construct a well-behaved system.

Test on notorious Hilbert matrices with							
IT-SVD based upon Volokh-Vilnay							
m	Norm(A*A ⁻¹ –I)	Cond(A)					
10	4.697 e-5	1.603e+13					
14	7.24101e-4	4.332e+17					
20	21.8273e-4	1.172e+18					
24	64.4935e-4	3.785e+18					
28	69.0682e-4	4.547e+18					

Neumann Boundary Conditions and loss of Accuracy at the boundary

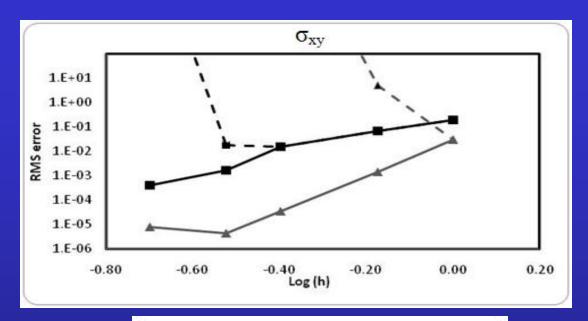
All numerical methods loose accuracy when derivatives are approximated.

MQ's rate of convergence is O($\lambda^{\mu-|m|}$), where $\mu = h/c_j$ and m is the order of spatial differentiation.

Remedy: Increase μ so $\mu >>|m|$.

Solid Mechanics problem

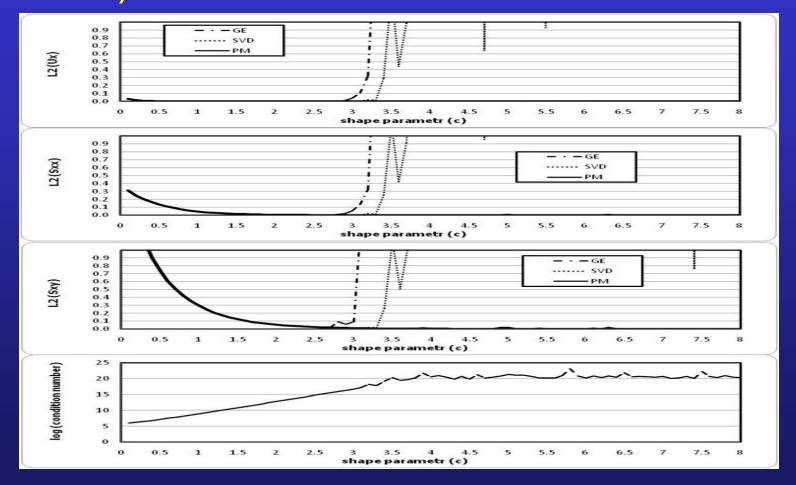
- $u_x = (-P/6EI) (y-D/2)[(2+v)y(y-D)]$;
- $u_y = (P_V L/2EI)(y-D/2)^2 \{x=0, 0 \le y \le D\} \partial \Omega_1$
- {x=L, $0 \le y \le D$ } $t_x = 0$, $t_y = (Py/2I)(y-D) \partial \Omega_2$
- { 0 < x < D, y = 0, D} $t_x = 0, t_y = 0$ $\partial \Omega_{2,4}$
- E = 1000, v = 1/3, L =12, D = 4, I= moment of inertia, P = applied force
- See Timoshenko and Goodier (1970).



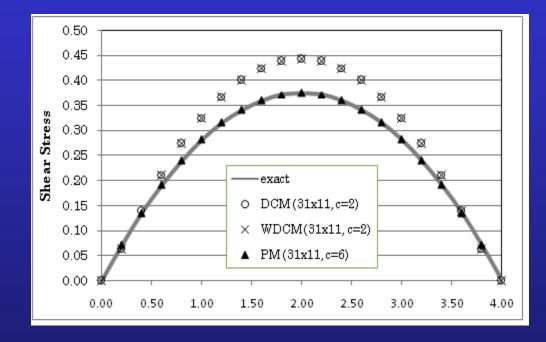
RMS errors with different solvers

Boundary Type	Neumann B.C.			Dirichlet B.C.		
Solver Method	GE	SVD	IT- SVD	GE	SVD	IT- SVD
u _x	1.48E-2	1.47E-2	5.82E-5	1.83E-4	8.38E-5	5.07E-6
u _y	1.27E-2	1.07E-2	3.35E-5	0.23E-4	1.25E-5	5.35E-7
σ_{xx}	4.34E-2	4.24E-2	8.38E-5	1.82E-3	9.13E-4	3.18E-5
σ _{yy}	3.78E-2	4.07E-2	8.82E-5	1.85E-2	1.03E-2	3.95E-4

Dependency of L₂ errors on c (PM=IT-SVD)



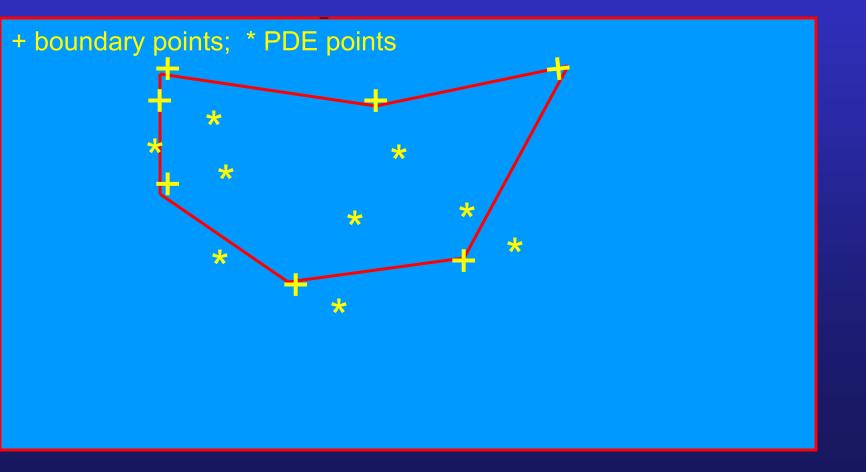
Shear stress at section x =L/2 of the beam with Neumann BC and PM=ITSVD



Comments on Boundary condition implementation and convergence

- Just using a equi-distributed set of data centers is not sufficient for accurate representation of Neumann BCs
- Specifying -k∂T/∂n=g can be inaccurate if centers inside and outside ∂Ω are too widely separated

H-scheme- PDE exist everywhere in \Re^d , extend the domain outside of boundaries



Neumann conditions: Good accuracy with IT-SVD scheme and large c²_i

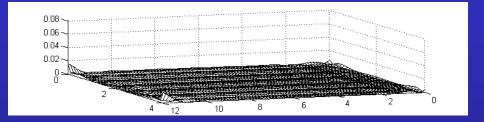
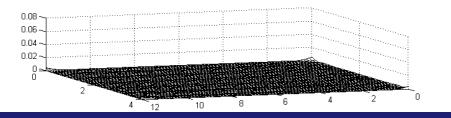


Figure 4. Error distribution in stress field scattered data interpolation,
 (a) adaptive mesh refinement;



• (b) Adaptive shape parameter increment

Huang et al, EABE vol 31,pp614-624 (2007)

- They compared double & quadruple precision for the c- and h-schemes.
- For a fixed c & h, $t^{CPU}_{quad} = 40t^{CPU}_{double}$
- t^{CPU}_{quad} (c-scheme) = 1/565 t^{CPU}_{double} (h-scheme).
- High accuracy & efficiency achieved with c-scheme.

Accuracy of MQ-RBFs vs FEM/FDM

- The accuracy of MQ-RBFs is impossible to match by FEM or FDM.
- Huang, Lee, & Cheng (2007) solved a Poisson equation with an accuracy of the order 10⁻¹⁶ using 400 data centers.

FEM/FDM vs MQ-RBF example from Huang, Lee, & Cheng (2007)

- Assume that in an initial mesh, FEM/FDM can solve to an accuracy of 1%.
- Using a quadratic element or central difference, the error estimate is h².
- To reach an accuracy of 10⁻¹⁶, h needs to be refined 10⁷ fold

FEM/FDM vs MQ-RBF example from Huang, Lee, & Cheng (2007)

- In a 3D problem, this means 10²¹ fold more degrees of freedom
- The full matrix is of the size 10⁴²
- The effort of solution could be 10⁶³ fold
- If the original CPU is 0.01 sec, this requires 10⁵⁴ years
- The age of universe is 1.5 x 10¹⁰ years

Variable c_i-Fornberg & Zeuv (2007)

 They chose ε_j =1/c_j = 1/c_{ave}d_j, where d_j is the nearest neighbor distance at x_i.

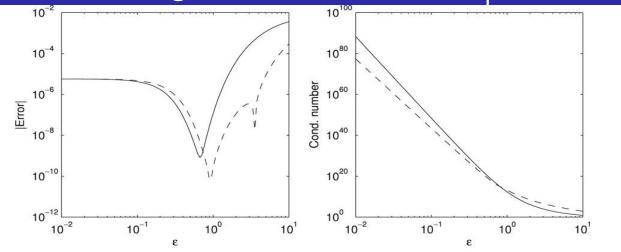


Fig. 7.4. Comparison of results when interpolating $f(x) = \frac{1}{1+x^2}$ on an equispaced grid with n = 21 points over [-1, 1], using spatially constant ε (solid lines) and spatially variable ε_k (as described in the text; dashed lines) for (a) max norm error and (b) condition number for linear system.

Implementation recommendations for RBF PDEs MQ shape parameters

Consider the MQ RBF $\phi_k(\mathbf{x}) = [1 + (\mathbf{x} - \boldsymbol{\xi}_k)^2 / c_k^2]^{\beta} \quad (\beta \ge -1/2) \text{ (MQ)}$

Wertz, Kansa, Ling (2005) show: 1. Let $\beta \ge 5/2$; asysmpotically MQ is a high order polyharmonic spline

2. Let $(c_k^2)_{\partial\Omega} \ge 200(c_k^2)_{\Omega\setminus\partial\Omega}$

Fedoseyev et al.(2002)

 By extending the PDE domain to be slightly outside of the boundaries, they observed exponential convergence for 2D elliptic PDEs.

Fornberg & Zuev, Comp.Math.Appl. (2007) Variable ε_j =1/c_i reduces cond.number, improves convergence

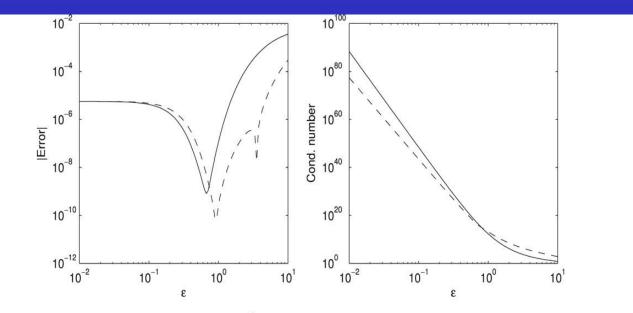


Fig. 7.4. Comparison of results when interpolating $f(x) = \frac{1}{1+x^2}$ on an equispaced grid with n = 21 points over [-1, 1], using spatially constant ε (solid lines) and spatially variable ε_k (as described in the text; dashed lines) for (a) max norm error and (b) condition number for linear system.

Summary of Wertz study

- Using $\beta > \frac{1}{2}$ produces more rapid convergence.
- Boundary conditions make the PDE unique (assuming well posedness), hence $(c_j^2)_{\partial\Omega} >> (c_j^2)_{\Omega\setminus\partial\Omega}$
- Permitting the (c_j²) on both the ∂Ω and Ω\∂Ω to oscillate reduces RMS errors more, perhaps producing better conditioning.

Front tracking is simple with meshless RBFs

- No complicated mesh cell divisions.
- No extremely fine time steps using above method.
- No need for artificial surface tension or
- viscosity.

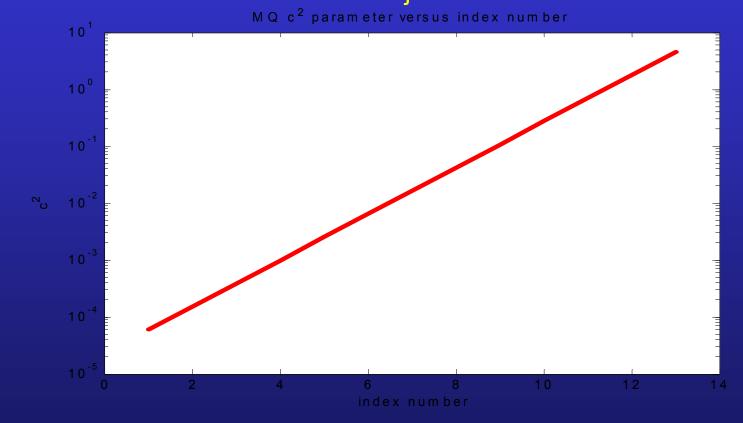
Sethian's test of cosine front

- At t=0, flame is a cosine front, separating burnt and unburnt gases.
- This front should develop a sharp cusps in the direction of the normal velocity.
- Conversely, a front should flatten when it faces in the opposite direction.
- The flame front moves by the jump conditions in the local normal direction.

Front tracking is very hard with meshes

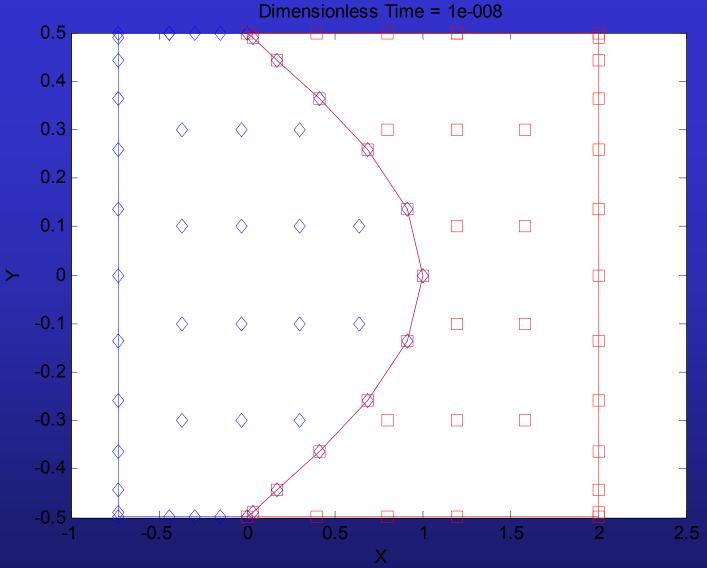
- Front capturing requires unphysical viscosity.
- Complicated problems of mesh unions and divisions as front moves in time.
- The tangential front is usually not a spline, artificial surface tension and viscosity are required for stability.

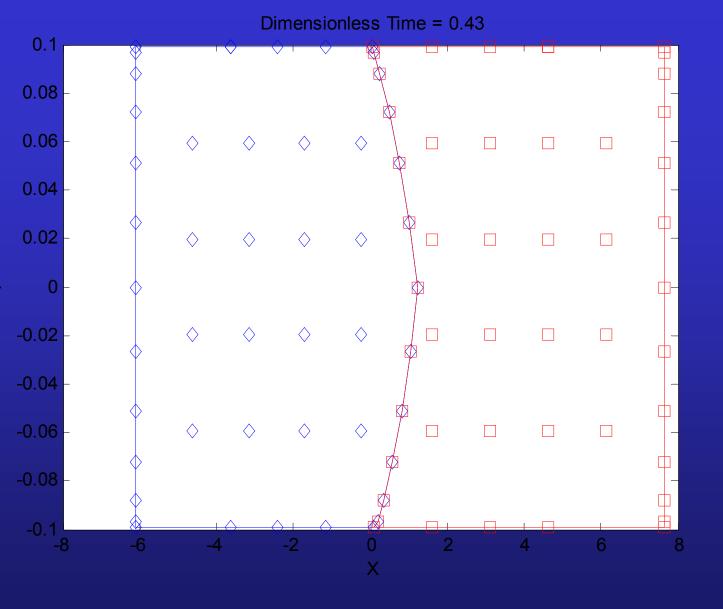
In 1990, Kansa showed the best performance with variable c_i² ,not a constant.

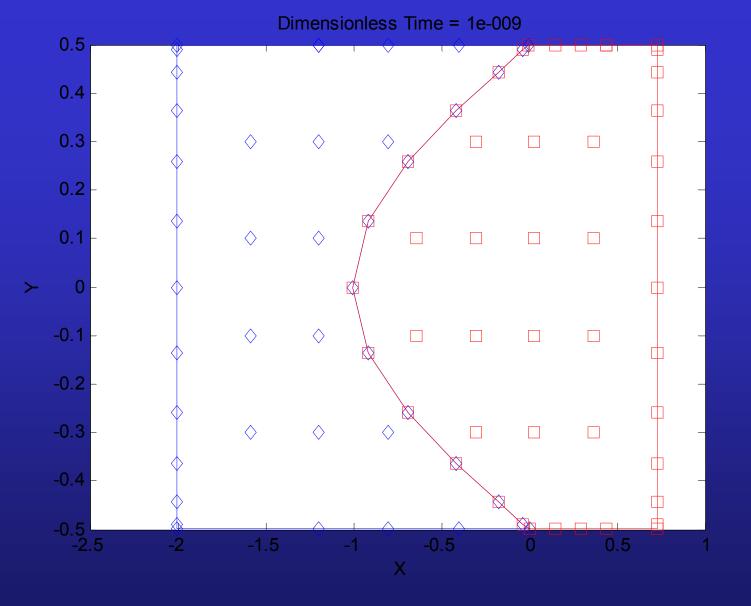


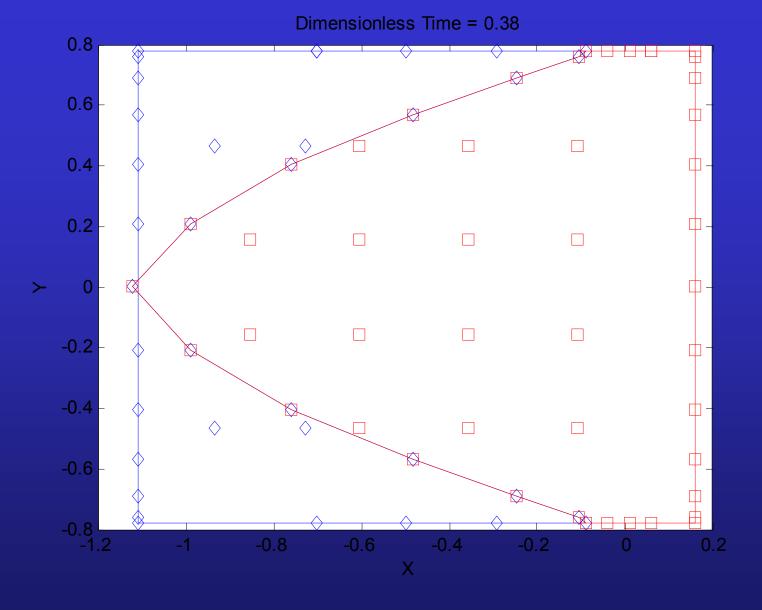
Turbulent flame propagation studies

- Traditional FDM required 14 hrs on a parallel computer to reach the goal time of 1.
- Time required for the RBF method to reach the goal time of 1 was 23 seconds on a PC.



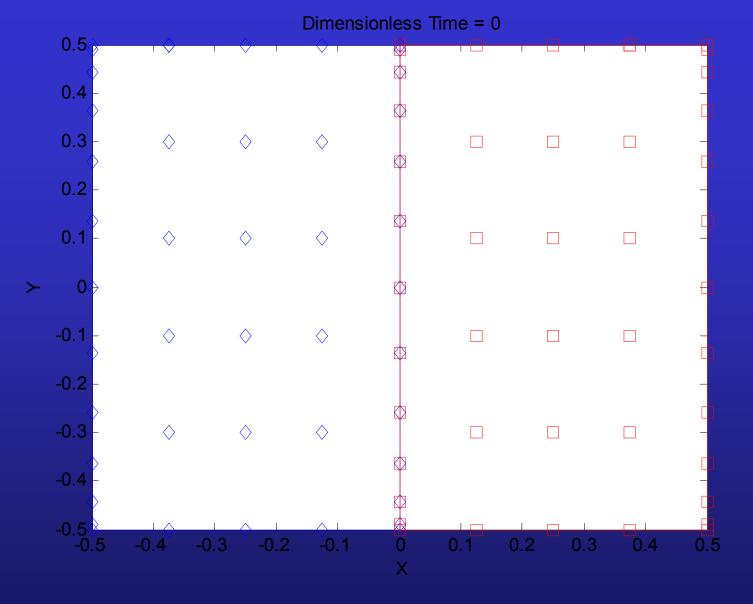


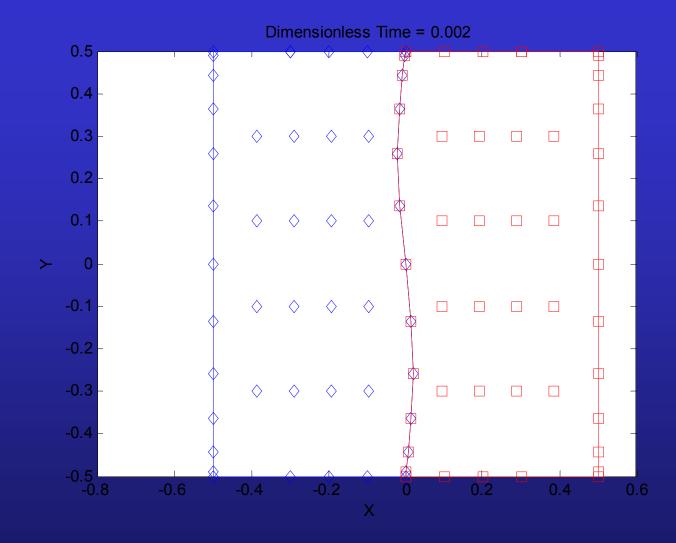


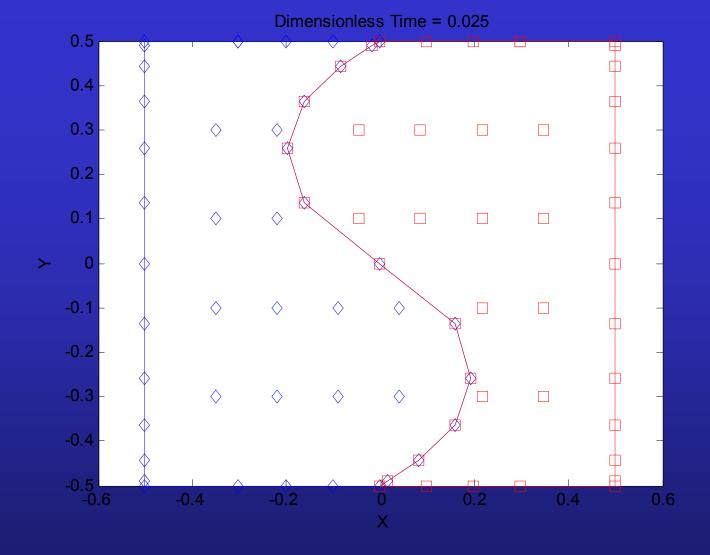


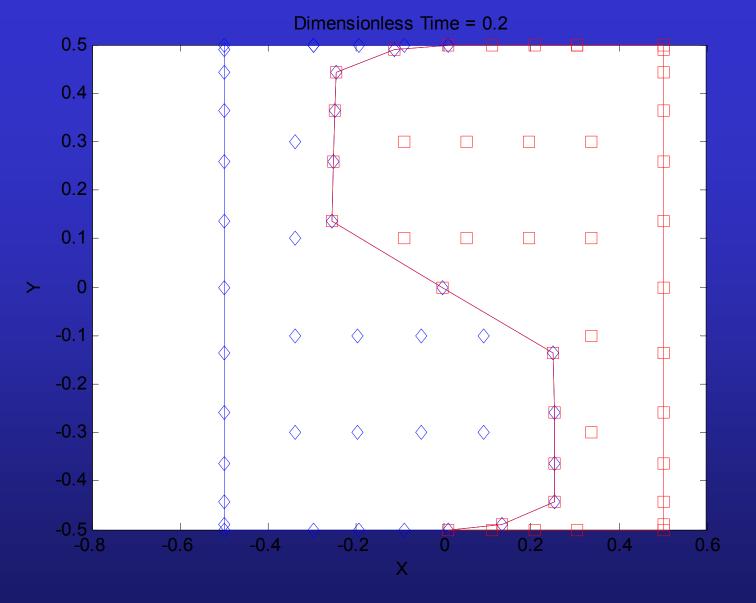
2D Vortical turbulent combustion

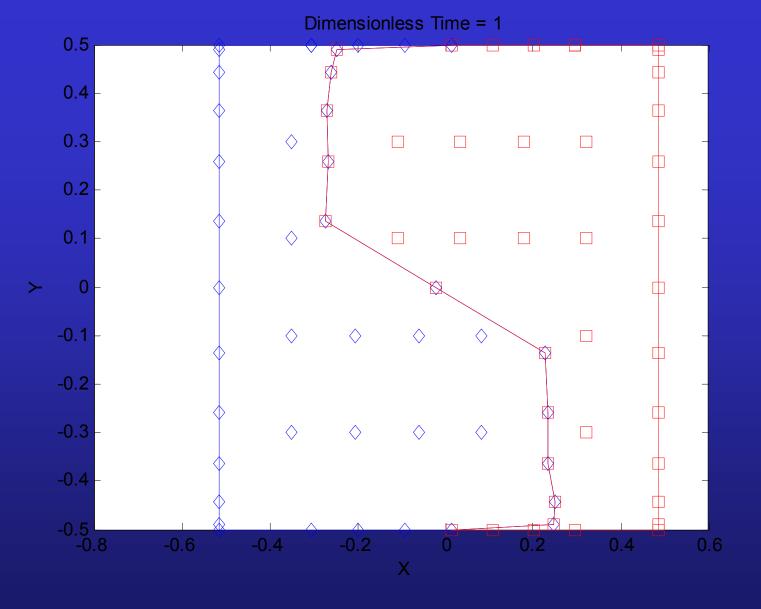
- 2D infinitely periodic turbulent flame.
- PDEs are hyperbolic, use exact time integration scheme, EABE vol.31 577–585 (2007).
- Flame front is a discontinuous curve at which the flame speed is normal to flame front.
- Two separate subdomains used: burnt and unburnt gases, jump conditions for flame propagation.











Summary

- Use spatial refinement sparingly.
- The variable $c_j^2 = |U| / |\nabla U|$ is more stable, accurate and better conditioned.
- The IT-SVD projects small singular values into the null space.
- Need to investigate Huang et al.'s claim that extended precision is indeed cost-effective in minimizing total CPU time.
- Hybrid combinations of domain decomposition, preconditioning, variable c's, IT-SVD, & extended precision need to be examined.

Efficiency of meshless MQ-RBFs versus traditional, long established FDM,FEM, & FVM

- CPU time (FDM,FEM, FVM)/discretization pt << CPU time(RBFs)/discretization pt
- END OF STORY NO
- BOTTOM LINE total CPU time to solve a PDE problem, t_{CPU}(RBF) <<t_{CPU}(FEM,FDM,FVM).
- Exponential convergence wins!