Workshop on Petascale Computing : Its Impact on Geophysical Modeling and simulation 5-7 May 2008, NCAR Mesa Laboratory

Transition in Energy Spectrum for Forced Stratified Turbulence

Yoshifumi Kimura Graduate School of Mathematics, Nagoya University

> in collaboration with Jack Herring (NCAR)

Transition in Energy Spectrum for Rotating and Stratified turbulence

-5/3 : Kolmogorov turbulence (3D)

The objective of this talk is

to see if there is also a transition in the energy spectrum for flows with only stratification.

Navier-Stokes equation with the Boussinesq approximation

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla p + v\nabla^2 \mathbf{u} + \theta \mathbf{\hat{u}}$$
$$\frac{\partial \theta}{\partial t} + (\mathbf{u} \cdot \nabla)\theta = \kappa \nabla^2 \theta - N^2 w$$
$$\nabla \cdot \mathbf{u} = 0$$

where

- $\mathbf{u} = (u, v, w)$: velocity
- θ $N^2 = \frac{g\alpha}{T_0} \frac{\partial \overline{T}}{\partial z}$: Brunt - Väisälä frequency
- : temperature fluctuations

Numerical Methods

forced simulations

- > 2π -periodic box with up to 512^3 grid points
- ◆ 3rd order time-marching scheme
- Initial energy spectrum : E(k) = 0
- Force horizontal velocity components
- Add red noise to modes within a wave number band

Forced turbulence simulation

"Craya-Herring" decomposition

$$\mathbf{e}_{1}(\mathbf{k}) = \frac{\mathbf{k} \times \mathbf{g}}{|\mathbf{k} \times \mathbf{g}|} \quad \mathbf{e}_{2}(\mathbf{k}) = \frac{\mathbf{k} \times (\mathbf{k} \times \mathbf{g})}{|\mathbf{k} \times (\mathbf{k} \times \mathbf{g})|} \quad \mathbf{e}_{3}(\mathbf{k}) = \frac{\mathbf{k}}{|\mathbf{k}|} \quad \text{orthnormal coordinates}$$

$$\tilde{\mathbf{u}}(\mathbf{k}) = \phi_{1}\mathbf{e}_{1}(\mathbf{k}) + \phi_{2}\mathbf{e}_{2}(\mathbf{k}) \quad \tilde{\theta}(\mathbf{k}) = N \quad \phi_{3}\mathbf{e}_{3}(\mathbf{k}) \quad \text{new variables}$$

$$\partial_{t}\tilde{\mathbf{u}} = -\mathbf{i} \,\mathbf{k}\tilde{p} - \mathbf{g}\tilde{\theta} - 2\Omega \times \tilde{\mathbf{u}} \quad \text{linear Navier-Stokes}$$

$$\partial_{t}\tilde{\theta} = N^{2}\tilde{u}_{3} \quad \text{linear Navier space}$$

$$\int_{\mathbf{k}}^{\mathbf{k}} \left(\phi_{1} - 2\Omega\cos\xi - 0 - N\sin\xi - 0 \right) \left(\phi_{1} - 2\Omega\cos\xi - 0 - N\sin\xi - 0 \right) \left(\phi_{2} - 2\Omega\cos\xi - 0 - N\sin\xi - 0 \right) \left(\phi_{1} - 2\Omega\cos\xi - 0 - N\sin\xi - 0 \right) \left(\phi_{1} - 2\cos\xi - 0 -$$

Enstrophy contours for 512³ simulation side view (forced turbulence)

QuickTimeý Dz Sorenson Video 3 êLí£ÉvÉçÉOÉâÉÄ ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽÇ…ÇÕïKóvÇ-ÇÅB Thanks to John Clyne (NCAR)

Enstrophy contours for forced turbulence

Transition in stratified turbulence spectra

Buoyancy- to inertial range transition in forced stratified turbulence

Carnevale, Briscolini & Orlandi

J. Fluid Mech. (2001) **427** pp. 205-239.

equi-density surface

Energy and Enstrophy dissipations		
E	$=2\int_{0}^{\infty} v_{\rm eddy}(k)k^{2}E(k)dk$	$\eta = 2 \int_{0}^{\infty} v_{\text{eddy}}(k) k^4 E(k) dk$
$N^2 = 1$	0.625 E 10 ⁻²	$0.143 \equiv 10^2$
$N^2 = 10$	0.626 E 10 ⁻²	$0.124 \equiv 10^2$
$N^2 = 50$	0.629 Ξ 10 ^{−2}	0.815 ± 10^{1}
$N^2 = 100$	0.575 Ξ 10 ⁻²	0.615 ± 10^{1}
Not big change!		

Both ϵ and η are small scale quantities !

Compensated Φ_1 spectra (high wave number)

Compensated Φ_1 spectra (low wave number)

15/17

16/17

Difficulties in the problem

- The spectra are extended in the wide range of wave number space which have different features due to different physical (or instability) mechanisms.
- Parametrization of the large scale spectra needs small scale information (on dissipation.)
- Slow processes (such as spectrum building, or large scale structure formation) exist in the calculation.

Those are some reasons we need "petascale computing"