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. A%Numer/'ca/ Error

Consider the 1-d hyperbolic model problem in a periodic domain
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Error Components - 3rd Order Up 1/1//'/7’"0l
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Centered Schemes

X Symimetric schemes have no dissipation error.

hese schemes are usually unstable for high
.nolds number flows.

e problem IS that they do not conserve
lnetic energy even though mass, momentum,
" and total energy are conserved.
- X Numerical dissipation (upwinding) Is often
used to mask the kinetic energy conservation
problem. Dissipation is bad for turbulence!




Kinetic Energy Conserving Schemes

X Through the correct use of averaging
)perators, symmetric differencing schemes
cal be made to conserve kinetic energy.

L % 2nd order variants are easy to derive and

- code.

X Extension to higher orders is difficult and may
Impossible for certain boundary conditions.



Alternatives for Discrete Methods

_Use an upwind scheme. Although the
“Work increases, the order can be
yereased arbitrarily.

se a 2nd order kinetic energy
~ ‘conserving scheme. What about
*  dispersion error in this case?




Dissipation:vs Dispersion - Turbulent Wake
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Effects of Numerical Dissipation

/ X Nupaerical dissipation removes significant
' rgy at small scales, overriding the
pulence cascade mechanism.

&lhere is overwhelming evidence to suggest
~ that dissipative schemes are very poorly suited
 for turbulence simulation.

" X This is especially true for Large Eddy

Simulation (LES) where there Is supposed to
be significant energy at the grid scale.




Effects of Numerical Dispersion

‘effects of dispersion error are much more

__ )I(h

& "': here Is considerable evidence to suggest that
~ turbulence is surprisingly forgiving of this type
of error.



Minmimizing Dispersion Error

/ X We_can minimize the effects of dispersion
| (eror by simply reflnlng the mesh

R us to compute with 1011-1013 mesh
. paints.
HAlthough error is still present, it is pushed to a
less energetic portion of the solution.

X These error-contaminated very small scales
are still effective at transferring and dissipating
energy.



Energy, E(k)

Mesh Refinement
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y
Experience with 2nd Order Schemes

LEC ‘DNS mesh refinement by a factor of
{ ("2yields results that compare well with

speetal methods (Choi and Moin 1990).

=For LES, factors of 2-3 are required
- (Lund 1995).




2nd Orger Finite

rpolate velocity
centers to face.
roject velocity onto
e face normal to

X I nr
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Volume Me thad‘

/

seompute fluxes.

= Balance fluxes to get
time rates of
" change.




Advantages of 2nd order F.V.

r conservative (mass, momentum, kinetic
ergy).
) coordinate transformation required -

Very easy to achieve high parallel efficiency.

X Can be extended to irregular, unstructured
meshes.



Sample Simulations

AT bulent channel flow.

\ ._Jet engine compressor.
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Kelvin -He{gmo/tz Instability Re :Zgléa

Mean Streamwise Velocity, Dynamic LES, 512X256X256
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Asymmetric Diffuser

Kaltenbach et al. 1999




Cylinder Wake - Re=3900

Krevchenko et al. 1998




Jet.£ngine Compressor

Schluter et al. 2002

QuickTime™ and a
YUV420 codec decompressor -
are needed to see this picture. \ %




« conclusions

L. Order kinetic energy conserving schemes
ke surprisingly well-suited for turbulence
Sifatilation.

X These algorithms make increasing sense as
computers become larger and faster.
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