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• A lesson learned from ”Predicting weather, climate and extreme events” (JCP,
2008, vol. 227): there is no set of equations uniformly adopted throughout the
NWP community, and all operational models differ in some respect already at the
theoretical level.

• In spite of the ongoing debate (on the preferred theoretical formulation), there
seems to be a belief that anelastic (viz. soundproof) equations are inappropriate
for predicting weather and climate.

• However, anelastic models evolve, progress, expand their predictive skill and
range of expertise, and keep producing sound results.



Figure 1: Aqua planet simulation with three different models, courtesy of Dave Williamson; see
also Abiodun, Prusa & Gutowski, Climate Dynamics 2008

• The aim of this presentation is to draw attention to some recent developments
and to some not-necessarily obvious aspects of soundproof models.



Conservative integrals of adiabatic Durran’s equations†

• Soundproof equations — including classical incompressible Boussinesq model
(Spiegel & Veronis, Astrophys. J., 1960) — underlie the majority of research in
low-Mach-number flows under gravity, such as atmospheres (planetary and stellar)
and oceans.

• Apart from filtering out sound waves, anelastic models truncate baroclinic pro-
duction of vorticity, in essence, to horizontal gradients of buoyancy; thus admitting
thermally driven circulations only in vertical planes (viz., ‖ g).

• The Durran (J. Atmos. Sciences 1989, J. Fluid Mech. 2008) sound-proof sys-
tem is different, as it retains the unabbreviated (viz. non-Boussinesq) form of the
momentum equation; thus separating baroclinicity from compressibility per se.

†After Smolarkiewicz & Dörnbrack, 2008 Int. J. Numer. Meth. Fluids, 56, 1513-1519 ⇒ IJNMF08.



• For decades, anelastic models were successful in advancing the understanding
of geophysical and stellar flows; however, their range of validity is not yet fully
understood — the underlying scale analysis is not a generally discriminating tool.

Figure 2: DNS of Rayleigh-Bénard convection in cryogenic gas; Ra ∼ 2 · 104.

• Arguable examples range from bifurcating Rayleigh-Bénard convection in cryo-

genic gas (Robinson & Chan, Phys. Fluids 2004) to “climate” of the solar convec-
tion zone (Robinson & Chan, Month. Notes Roy. Astron. Soc. 2001)



Figure 3: Solar convection. Radial velocity and two alternate solutions for angular
velocity (DNS at Re ≈ 80 versus LES; Elliot & Smolarkiewicz, IJNMF 2002)).

• In the literature, the disparities between fully compressible and anelastic simula-
tions are often attributed to compressibility per se (viz. ∂ρ′/∂t), thus repudiating
anelastic models.

• The distinct vorticity dynamics of the Durran pseudo-incompressible system
makes it a unique theoretical tool that complements both the standard anelastic
and fully compressible models.



Durran vs. Lipps-Hemler (JAS 1982) sound-proof equations
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• The two (adiabatic) systems differ in a few items:
i) ρ∗ = ρbθb in (1), but ρ∗ = ρb in the anelastic system;
ii) the term ∝ ∇(ln θ) on the rhs of the momentum equation;
iii) ambient θe(x) in the buoyancy denominator, in lieu of the base state θb(z);
iv) v′ ≡ v − (θ/θe)ve in (1), but v′ ≡ v − ve in the anelastic system.

• The deeper the studied Earth’s atmosphere or larger the stratification, the greater
will be solution departures from the familiar behaviors of anelastic codes.



Conservative Integrals (http://www.mmm.ucar.edu/eulag)

• For each dependent variable ψ, a template algorithm
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• (2) is implicit for all dependent variables in (1). To retain this proven structure
for the Durran system, (2) is executed as
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where ν = 1, .., m numbers the outer iterations, and at each iteration the implied
linear elliptic problem is solved with preconditioned GCR algorithm. For θn+1,0

we use the homogeneous solution (2) for ψ ≡ θ = θ ′ + θe and R ≡ 0.



Results

• For shallow (≈ 10 km deep) mesoscale motions the differences between the
compressible, anelastic and Durran’s systems were shown insignificant compared
to truncation errors of discrete integrals (Nance & Durran, JAS 1994).

• In IJNMF08 we reported the differences immaterial even for deep (60 km)
mesoscale atmospheres and shallow (10 km) planetary orographic flows.

Figure 4: Meso- and planetary-scale orographic flows.

• This is consistent with the normal mode analysis of Davies et al. (QJR 2003),
predicting substantial differences between the two soundproof systems (and fully
compressible equations) only for deep planetary atmospheres =⇒



(a) (b)
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Vertical velocity for anelastic (a), (b) and Durran

(c) solutions — idealized 2D deep planetary inertia-

gravity wave at a mid latitude; (a) and (c) are after

4h, and (b) is after 12h starting from a potential oro-

graphic flow. Grey scale and contour intervals are the

same in all panels, but wind vectors scale with max-

imal flow magnitude. Mountain height and width al-

lude to the continent of North America.



Baroclinic lifcycle experiments

• Each system has slightly different thermal wind balance θe(y, z) ⇒ ue(y, z)

Durran ⇒ 0 = −θe∇(πe − πb) − g(θe − θb)/θb − f × ve ,

Lipps − Hemler ⇒ 0 = −∇(φe − φb) − g(θe − θb)/θb − f × ve ,

so it is difficult to assess aspects of equations rather than of initial conditions



Normalized surface vertical vorticity after 10 days; Lipps-Hemler anelastic solution (left) and Durran solu-

tion (right); Lipps-Hemler thermal-wind initialization (top) and Durran thermal-wind initialization (bottom).



Remarks

• For adiabatic dynamics the differences between consistent numerical solutions
of the Durran and Lipps-Hemler anelastic equations appear immaterial for a broad
range of problems, but become substantial for very deep planetary modes.‡

• Whether this conclusion holds for diabatic dynamics remains largely unknown
— likely, because it adds substantial complexity to the resulting boundary value
problem for pressure, due to diabatic source appearing in the mass-continuity
equation:

∇ • (ρ∗v) = H ⇒ (4)

∇ • (ρ∗vs) = 0, vs ≡ v − ∇z
ρ∗

z∫
0

H dξ .

Thus (4) defines a vertically adapting coordinate d z =
dt

ρ∗

z∫
0

H dξ.

‡Noteworthy, very deep planetary inertia-gravity waves are misrepresented much more in the Durran

system than in the Lipps-Hemler anelastic model (Davies et al 2003).



Comments on soundproof models

• It is important to distinguish between anelastic system of equations and anelas-
tic model (code). An anelastic model can include a variety of optional soundproof
systems, such as Ogura-Phillips, Lipps-Hemler, Bacmeister-Schoeberl, Durran
as well as incompressible/compressible Boussinesq, incompressible Euler, Voigt
(viscoelastic) and even fully compressible Euler equations.

• Soundproof models do not have to depend on horizontally homogeneous refer-
ence profiles Ψb = Ψb(z). New formulation of the pseudo-incompressible model
(Durran J. Fluid Mech. 2008) allows for Ψb = Ψb(x, t).



• The efficacy of soundproof models can be greatly enhanced by admitting an
ambient state — a particular solution to a subset Fe(Ψe,Ψb) = 0 of a governing
set F(Ψ,Ψb) = 0 — to formulate the perturbational form F′(Ψ,Ψb,Ψe) = 0

• The geometry, but not the anelasticity per se, inhibits some physics. In a time
dependent curvilinear framework, ∇ · ρb(z)v = 0 becomes ∂tρ

∗ + ∇ · ρ∗v∗ = 0,
with ρ∗ := G(x, t)ρb, thus facilitating a variety of boundary-condition models.

Figure 5: Flow past a sea mount (incompressible Euler eqs.); Wedi & Smolarkiewicz 2003 (JCP).



Conclusions

� Davies et al (QJR, 2003) performed a thorough normal-mode analysis of various
equation systems, and quantified their departures from fully compressible equa-
tions. Regardless of the conclusions derived, their results extend (upscale) the
validity of anelastic equations for atmospheric circulations.

� It can be difficult to design conclusive comparisons of compressible and sound-
proof equations. It is easy to fall in comparing numerics and/or model setups.

� There is no hope for solving practical fluid equations analytically. Thus, the
utility of a theoretical model depends on the quality of numerics. Incidentally,
soundproof equations admit more flexibility (than fully compressible equations)
in designing accurate large-time-step integration methods.



� The research record of a single anelastic model (EULAG; Prusa et al. 2008
Comuput. Fluids) for a range of scales from planetary to microphysical, and for a

Figure 6: Geophysical turbulence; scales of motion O(107), O(104), and O(10−2) m.

range of applications from solar convection, via oceanic and atmospheric circula-
tions, to laboratory and wind tunnel studies documents the versatility of sound-

Figure 7: A range of applications

proof equations, and exhibits their potential for unified numerically-consistent
Earth-system models.


