
Can Scalable Development Lead
to Scalable Execution?

Damian Rouson
Scalable Computing R&D

Sandia National Laboratories

Sponsors:
Office of Naval Research, City University of New York

Outline
• Motivation, Objectives & Guideposts
• Conventional development
• Scalable development
• Applications
• Toward scalable execution
• Conclusions & Acknowledgments

Motivation

Code writing, efficiency & translation

Limits of HPC software tools
Personnel
Hardware

MPI issues
Performance

I/O issues
Other

Debugging

Objectives

1. To develop a design methodology that scales
up to large numbers of programming units, e.g.
procedures, classes, data structures, etc.

2. To demonstrate that this methodology can
produce new science.

3. To demonstrate that this approach also scales
up to large numbers of execution units, e.g.
threads, processes, cores, etc.

Guideposts
“What are the metrics?”
Oyekunle Olukotun, Stanford EE/CS, c. 1996

“Procedural programming is like an N-body problem.”
Lester Dye, Stanford Petroleum Eng., c. 1995

“Separate the data from the physcis.”
Jaideep Ray, Sandia, c. 2004

“First they ignore you. Then they laugh at you. Then they
fight you. Then you win.”
Mahatma Ghandi, c. ????

Outline
• Motivation, Objectives & Guideposts
• Conventional development

– Amdahl’s Law
– Pareto Principle
– Complexity

• Scalable development
• Applications
• Toward scalable execution
• Conclusions & Acknowledgments

Conventional Development
Total solution time

Mathematical
Modeling

Code
writing

Production
Run

Debugging

Barrier

Amdahl’s Law

5.1lim
1

3

1

3

2

1
=!

+

=
"#

tot
S

run

tot
S

S

S
run

Code Writing Time Debugging Time Run Time

original run time
!

run
S

Total speedup:

Run-time speedup:

3/1 3/1 3/1

Representative case study for a published run*:

optimized run time

*Rouson et al. (2007) Proc. 2006 Summer Program, Center for Turbulence Research, Stanford University.

initial
t finalt

The speedup achievable by focusing solely on decreasing
run time is very limited.

Pareto Principle
When participants (lines) share resources (run time), there
always exists a number such that (1-k)% of
the participants occupy k% of the resources:

Limiting cases:

• k=50%, equal distribution

• k100%, monopoly

Rule of thumb: 20% of the lines occupy 80% of the run time

Scalability requirements determine the percentage of the
code that can be focused strictly on programmability:

)100,50[!k

5
/8.02.0

1
lim

%

max
%

=
+

=
!"

k
S S

S
k

Runtime Profile

• 5% procedures occupy nearly 80% of run time.

• Structure 95% of procedures to reduce development time.

23.6transform_to_physical

38.7transform_to_fourier

43.8Statistics_

44.0Nonlinear_Fluid

47.8RK3_Integrate

79.5operator(.x.)

100.0main

Inclusive Run-Time Share
(%)

Procedure

Calls

Total Solution Time Speedup

1 2 3 4 5 6 7 8
1

1.25

1.5

1.75

Nummber of Processors

T
o

ta
l

S
o

lu
ti

o
n

 T
im

e
S

p
ee

d
u

p

SGI Math Library

Number of Threads

Intel Math Kernel Library (MKL)

Theoretical Limit

Conventional Development
Model Problem: Unsteady 1D Diffusion

!! 2
/ "=## Dt

2

11
2

x
D

dt

d
iii

i

!

+"
= "+ ###

#

Semi-discrete equations:

2

1 11

2

x
Dt

nnn

nn iii

ii !

+"
#!+= "++

$$$
$$

Fully discrete equations:

!!!
rrr
][

2
A

x

Dt

"

#"
+$

1
x 100

xL

x!

!

1
!

100
!

Solution algorithm:

Conventional Program Debugging
“Not much time is spent fixing bugs. Most of the time
is spent finding bugs.”
-- Shalloway & Truitt, Design Patterns Explained
-- Oliveira & Stewart, Writing Scientific Software

phi(1),phi(2),…,phi(100)
 Data Set

PROGRAM main
REAL :: phi(100),D=1.,dt=0.1,dx=0.01
phi = phi + (D*dt/dx**2)*laplacian(phi)

Legend

Write
Read

FUNCTION laplacian(phi)
REAL :: phi(:),A(SIZE(phi),3),laplacian(SIZE(phi))
laplacian(:)=A(:,1)*phi(:)+A(:,2)*phi(:) +A(:,3)*phi(:)

?

Bug Search Complexity
Consider a list of the unique program lines with all
lines that execute before the symptom preceding the
symptomatic line:

l

12/ !l

() 212/ !l

0)2(<! (symptom)

0<D (bug)

Code Fault Rates

500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8

10

12

14

Release n

Release n+1

Module Size

F

a

u

l

t

s

R

a

t

e

Fenton & Ohlssen, “Quantitative analysis of faults and
failures in a complex software system,” IEEE Trans.
Soft. Eng. 2000:

>3500

1000/6!" r

Fault
Rate

Module Size

Scientific Code Fault Rates
Hatton, L. “The `T’ Experiments – Errors in Scientific
Software,” Comp. Sci. Eng. 1997:
• 8 statically detectable faults/1000 lines of commercially
released C code
•12 statically detectable faults/1000 lines of commercially
released Fortran 77 code
• more recent data finds 2-3 times as many faults in C++

036.0006.0 !"# r

lines searched per bug
line review

[])(2/)12/()(

))(()(#

tr

tbugstsearch

!=

"=

ll
line review

Outline
• Motivation, Objectives & Guideposts
• Conventional development
• Scalable development

– Complexity
– Information theory

• Applications
• Toward scalable execution
• Conclusions & Acknowledgments

Object-Oriented Programming

m
l

Private Data

Private Data

Private Data

ll <<
m

line review[])(2/)12/()(trt
mmsearch

!= ll

Scientific OOP

Private Data

Private Data

Private Data

p

=!
p

m
l

"
lines per module

[])(2/)12/()(tpprtsearch != ""

procedures per module

line review

!! 2
/ "=## Dt

class(Field) :: phi

REAL :: D

d_dt(phi) = D*laplacian(phi)

222
/ x!!=" ## REAL, DIMENSION(n) :: p

laplacian(p) = d2_dx2(p)

xx !!"## // $$

class(Scalar) :: Smoke

Smoke = Smoke + dt*d_dt(Smoke)
t

tttt
!

!
"+="+

#
)()(

class(Grid) :: x

d_dx(p)=delta(p)/delta(x)

ii
xxx !=" +1

REAL :: dx

delta(x) = dx

Spatially
Differentiable

Fields

Field

Grid

Time
Integration
Algorithm

Governing
PDE

Spatial
Discretization

Legend: public, private

Scientific OOP
Integrator

Scalar

Decomposing the problem into a set of classes that
admit an abstract data type calculus yields

!

" # const., p # const.

Information Theory

0log !"= #
i

ii ppS

• Interface information content sets the minimum
amount of communication between developers.

• Let pi = frequency of occurrence of the ith keyword
in a set of statements. Shannon entropy is

• Repeated implementation of same procedural
interfaces generates high pi values low S.

• Kirk & Jensen (2004) related Shannon entropy of
codes to thermodynamic entropy, enabling the
study of phase transitions in code structure.

Kolmogorov Complexity
• For a program p, the Kolmogorov complexity K(p)

is the shortest description in some description
language

• Properties:
– Provably not computable.

– Bounded from above by any actual description of p.

– Lowest upper bound at any given time: compressed
program length + decompression program length

• Using this measure, we have detected slightly
greater complexity in C++ than Fortran 2003

Applications

Time Integrator

Grid

Fluid

Cloud

*Rouson et al. (2008) Physics of Fluids, February.

**Morris, Koplik & Rouson (2008) Physical Review Letters, in review.

***Rouson & Handler (2007) in Environmental Sciences &
Environmental Computing, Vol. III.

Field

Mixture

Magnetofluid

Time Integrator

Grid

Classical
Fluid

Quantum
Fluid

Field

Mixture

Currently Running

(Vertically adjacent layers communicate through interfaces.)

Quantum vortex
interactions with classical
fluids**:

Solid particle dispersion
in electrically conducting
fluids*:

Under Development

Time Integrator

Grid

FluidScalar

Field

Atmosphere

Cloud

Aerosol dispersion in the
atmospheric boundary
layer***:

Large Eddy Simulation of the ABL

z x

y

2 km

ΩΕ

dx

dP
Physical Processes

• Shear

• Buoyancy

• Coriolis effects

• Geostrophic wind forcing

• Thermal Fluctuations

• Passive Scalar

Code Details

• Fully spectral LES: Fourier in horizontal, Chebyshev in vertical.

• Uniform grid in horizontally, cosine-stretched grid vertically.

• Compressibility is neglected (different from COAMPS).

Advection

Coriolis

Pressure
Subgrid
Physics Buoyancy Geostrophic

pressure
gradient0=!" u

!

"# '

"t
+ u $%# ' =% $

&
T

Pr
T

%# '
'

(
)

*

+
,

13

'

e
dx

dP
geCN

t

u

o

sgs ++!"+#"$+=
%

%

&

&
'Momentum:

Mass

Heat

!

" sgs =2#$
T
#S

!

"
T
=C

S
l2 2#S

2
Smagorinsky Sub-Grid Scale Turbulence Model:

!~l (grid scale)

Governing Equations

!

" # cp$ % & +
r
u '

r
u /2

!

" # p p
0()

$

$ %1

!

" # T /$Exner Function: Virtual Temperature:

Lx = 12.57 km Ly = 2.0 km Lz = 4.71 km

G = 2.88 m/s (geostrophic wind)

ΩE = 7.2722 x 10-5 rad/s

νT = 0.72 m2/s (Agrees reasonably well with Sullivan et al BL Met. 1994)

ΔEkman = (νT/ ΩE)1/2 = 0.1 km

Re= (G∗Ly)/νT = 8000

• VERY SIMPLE PHYSICS

• PRESSURE GRADIENT IN THE X-DIRECTION
• CONSTANT TURBULENT VISCOSITY
• ROTATING EARTH

THESE PARAMETERS GIVE

Simulation Parameters

U*/G = 0.067 In good agreement with Coleman et al (JFM, 1990)

Mean Wind Profiles

Wind Velocity (W) in an x-y plane

Thin Ekman Layer with turbulent “eruptions”

W in x-z plane at 43 meters

Note highly elongated low speed regions and “gusts”

Vertical vorticity 640 meters in x-z plane

Note “coherent 2D vortices” --- Air-Spikes !?

Outline
• Motivation, Objectives & Guideposts
• Conventional development
• Scalable development
• Applications
• Toward scalable execution

– A strategy
– Turbulence at the petascale

• Conclusions & Acknowledgments

Toward Scalable Execution
class(Scalar) :: Smoke

Smoke = Smoke + dt*d_dt(Smoke)

Strategy:

• Decompose problem into elementary operations.

• Instantiate distributed objects, e.g. via Trilinos.

• Parallelize operators across distributed objects.

Potential pitfalls:

• Cache utilization.

• Combined instructions.

Turbulence at the Petascale
• R. D. Moser* estimates 1500 Petaflop-hours

required for DNS at Reτ=5000, which will
achieve asymptotic behavior in the log layer.

• The bottom plane of many ABL simulations lies
in the log layer & employs a boundary condition
valid at asymptotically high Reynolds number:

 *NSF Workshop on Cyber-Fluid Dynamics, Arlington, VA (2006).

!

u
+

=
1

"
+

#

Re$

%

&
'

(

)
* ln y

+
+
+y +

Re$

+ B

lim
Re$,-

u
+

=
1

"
ln y

+
+ B

Conclusions
• Applying Amdahl’s law to the total solution time

suggests that optimizing run time only severely
limits speedup.

• The Pareto Principle determines the percentage
of code that can be focused on programmability
rather than efficiency.

• The global data sharing in conventional
development leads to a quadratic search times.

• Enabling an abstract data type calculus
– Renders bug search times roughly scale-invariant and
– Limits interface content (developer communications)

• We have demonstrated scalable development on
several applications and proposed a path toward
scalable execution.

Acknowledgements
• NRL

– Dr. Robert Handler
– Dr. Robert Rosenberg

• CUNY
– Prof. Joel Koplik
– Ms. Karla Morris & Dr. Xiaofeng Xu

• University of Cyprus
– Prof. Stavros Kassinos
– Dr. Irene Moulitsas, Dr. Evaggelos Akylas, & Dr. Hari

Radhakrishnan
• University of Belgium

– Prof. Bernard Knaepen
– Dr. Ioannis Sarris

