

ESM Algorithmic Acceleration for petascale systems

Amik St-Cyr

by

Computational and Information Systems Laboratory

Outline

- The problem
- Algorithms in the geosciences
- Examples of "ESM" acceleration
 - Time-stepping
 - Solvers
 - AMR
- ESM algorithmic "vision" and current efforts
- Possible future directions

Goal

Goal

 Establish a roadmap for <u>most-productive use of petascale</u> <u>computing systems</u> for improving our knowledge of important geophysical dynamical processes.

- HOMME-APE CAM 3.0 physics
- Hydrostatic formulation
- 13km resolution (global)

LLNL BG/L

• (Also global WRF: nonhydrostatic)

Courtesy M. Taylor and J.P. Edwards

- Hydrostatic formulation
- 13km resolution (global)

LLNL BG/L

• (Also global WRF: nonhydrostatic)

Courtesy M. Taylor and J.P. Edwards

- Explicit / split-explicit time-stepping
- "Uniform" or structured meshes
- Science this enables:
 - "Seasonal" climate modeling
 - Next step "Weekly" climate modeling?
 - Next step "Daily" climate modeling??

- Explicit / split-explicit time-stepping
- "Uniform" or structured meshes
- Science this enables:
 - "Seasonal" climate modeling
 - Next step "Weekly" climate modeling?
 - Next step "Daily" climate modeling??

- Idealized model (no I/O, explicit ts, structured mesh...)
- Producing scientifically significant integration rates for climate (5 sypd @ 4km) will require increase in compute horsepower of the order of 10^4 to 10^6 !!!
- Moore's Law: will happen in 13 to 20 years...
- What can we do?

Improve algorithms used in geosciences...

Algorithms in geosciences

- Time-integration: explicit, split-explicit, semiimplicit, implicit, LMM, RK, Multi-rate, IMEX ...
- Space integration: SEM, DGM, FDM, FVM, RBF,...
- Elliptic problems: direct methods, iterative methods: KSP, multi-grid, preconditioning ...
- Optimization techniques

Time-stepping

- Assumptions for HOM:
 - Elements: E
 - Points/Elements: N^d
 - Tensor products cost: ${\cal N}^{d+1}$
 - Matrix vector cost: EN^{d+1}
 - Fast diagonalization where possible

Time-stepping

• Potential for acceleration:

<u>Method:</u>	<u>Cost:</u>
Explicit	$O(k_e E N^{d+1})$
Semi-implicit	$O(k_s[EN^{d+1} + k_k E(N/s)^{d+1} + E(N/s)^{d+1}])$
Fully implicit	$O(k_i [REN^{d+1} + EN^{3d} \frac{\pi^4}{90}])$

Time-stepping

• Potential for acceleration:

<u>Method:</u>	Acceleration:
Explicit	$a \le \frac{1}{EN^2}$
Semi-implicit	$a \le \frac{s^{d+1}}{\tilde{c}[(1+s^{d+1})/m+1]}$
Fully implicit	$a \le \frac{\Delta t_i}{\frac{\tilde{c}}{\nu} [R/N^2 + 1.2N^{2d-3}]}$

(For gravity waves) N=300 in 2D and N=8 in 3D

NSF

Examples of acceleration

SISL

- Semi-Implicit + Semi-Lagrangian
- Gravity waves and advective time-scale
- Proposed by A. Robert (81)
- Parallel issues in its classical version...
- Use idea of Maday et al. (90)
- N-L version for sw: (A and Thomas 05)
- Acceleration is 4 wrt explicit version
- Problem solved! ...

SISL

ODE resulting from SEM discretization (MOL)

$$\frac{du(t)}{dt} = S(u(t)) + F(u(t)), \quad t \in [0, T]$$

with initial condition $u(0) = u_0$

Problem: find integrating factor, $Q_S^{t^*}(t)$ such that $Q_S^{t^*}(t^*) = I$,

$$\frac{d}{dt}Q_S^{t^*}(t) \cdot u = Q_S^{t^*}(t) \cdot F(u).$$

To find the action of $Q_S^{t^*}(t)$ solve:

$$\frac{dv^{(t^*,t)}(s)}{ds} = S(v^{(t^*,t)}), \quad 0 \le s \le t - t^*$$

with initial condition $v^{(t^*,t)}(0) = u(t)$

<u>Comparison with reference solution from NCAR pseudo</u> <u>spectral core</u>

<u>Comparison with reference solution from NCAR pseudo</u> <u>spectral core</u>

Why is this important?

We want to model all scales in time and space...

Combining SISL with AMR leads to a contradiction!

dt=120s

dt=360s

dt=720s

dt = 120s

Conclusion: not a true multiscale algorithm ...

Fully implicit

- DG in space for Euler equations:WRF form
- New Rosenbrock W-method
- <u>No non-linear cycles</u> (Newton)
- No Jacobians: Jacobian free
- Low Mach preconditioning
- Element block Jacobi
- Results on benchmark tests
- Acceleration: 3 to 45 wrt to explicit version

Effects of low Mach solver tolerance ~ IE-6, (Nx,Nz)=(16,8), p=7,

180 meters resolution (approx.)

time	W LM	accel	WO LM	accel	
1.0s	30	3.2	33	2.8	
2.0s	36	5.I	45	4 . I	
10.0s	69	13.5	103	9.1	
50.0s	207	22.7	493	10.2	

"Wicker" Bubble: Wicker and Skamarock MWR02

Rising bubble

5 meters resolution, p = 7, Tf = 600 secs

Rising bubble

5 meters resolution, p = 7, Tf = 600 secs

INERTIA GRAVITY WAVE

- Inertia gravity wave in channel + bg flow
- dx=dz=500m, poly order 8, nez=3, nex=90
- dt=12, 25, 50, 75, 100 seconds
- Accelerations: 2.7, 3.9, 4.6, 4.7, 4.8 wrt explicit
- 20 m/s to the right

Skamarock and Klemp 02

INERTIA GRAVIT

- Inertia gravity wave in channel + bg flow
- dx=dz=500m, poly order 8, nez=3, nex=90
- dt=12, 25, 50, 75, 100 seconds
- Accelerations: 2.7, 3.9, 4.6, 4.7, 4.8 wrt explicit
- 20 m/s to the right

Skamarock and Klemp 02

Inertia Gravity wave

- Eady model (one more equation + Coriolis)
- Very thin channel (hydrostatic: shallow atm)
- I element in the vertical
- 600 in the horizontal (Ikm x Ikm resolution)
- _P=7
- accel > 45

Skamarock and Klemp 02

Inertia Gravity wave

- Eady model (one more equation + Coriolis)
- Very thin channel (hydrostatic: shallow atm)
- I element in the vertical
- 600 in the horizontal (1km x 1km resolution)
- _P=7
- accel > 45

Skamarock and Klemp 02

Semi (or full) implicitness leads to a matrix to invert...

Solvers

- Storing full LU impossible:
- Iterative method unavoidable
- Multigrid: is O(N)
- Two-levels Schwarz is optimal
- If parabolic PDE no coarse solver needed (semi-implicit behaves this way!)
- $\bullet\,$ For Laplacian high-order has a $N^4\,{\rm growth}$
- Non-overlapping optimized Schwarz

Classical Schwarz

Suppose we need to solve:

$$\mathcal{L}u = f \quad \text{in } \Omega, \quad \mathcal{B}u = g \quad \text{on } \partial \Omega$$

Partition the original domain into 2 domains:

Si vs Exp: Blue gene

SGT 07 SISC

ne=32, 40km

AMR

- Comparison of SEM with FVM (SJDTT 08)
- Both non-conforming dynamic approaches
- Uses tests from literature
- Cubed sphere (SEM) lat-lon (FVM)
- At comparable errors SEM more efficient
- Runs below I/3 degrees on I6 processors!
- SEM 6.5 times faster on realistic test

b) FV

Galewski et al. 2004 test

0.3125 degrees... $|\zeta| \ge 3 \times 10^{-5} \, {\rm s}^{-1}$

Flow impinging a mountain

High-resolution solution DWD (German weather service)

To generate same error one more ref in FVM: 6.5 slower than SEM

Take home message:

- Efficient time-stepping
- Unstructured adaptive meshes
- Optimal solvers

Take home message:

- Efficient time-stepping
- Unstructured adaptive meshes
- Optimal solvers

Can enable us to beat Moore's barrier

ESMs algorithm vision

- <u>AMR h-p + unstructured meshes:</u>
 - Resolutions of 1km possible on petascale machine: 10 km easily
 - Below I km if exascale considered:
 - Adaptation criteria <u>based on a goal</u>: global temperature
- <u>Multi-method time-stepping:</u>
 - Can mix any time-stepping scheme with provable error
 - Yields load balancing in space and time
 - All processes performed at their ideal time-scale
 - One big step with macro steps in-bedded
 - Multigrid p-based solvers with demonstrated efficiency
- Algorithmic implementation flexibility:
 - Unstructured meshes: mesh planet, mesh ocean, mesh Sun, mesh mantle's core, mesh cities, mesh boxes, mesh mesh mesh... HOM makes this viable
 - Jacobian free: change the equations but same algorithms

Current efforts

DGNH+AMR

- With <u>D. Neckels</u> ESMF
- Curvilinear elements
- Overhead of parallel AMR at each time-step: less than 1%

Idea based on Fischer, Kruse, Loth (02)

$$\sum_{k} \frac{d}{dt} \int_{\Omega_{k}} u = -\sum_{m} \int_{\Gamma_{m}} (\mathbf{F}_{num}(\mathcal{I}_{M}^{N}u_{l}, u_{r}) - \mathbf{F}_{num}(u_{r}, \mathcal{I}_{M}^{N}u_{l})) \cdot \hat{\mathbf{n}} = 0$$

DGNH+AMR

- With <u>D. Neckels ESMF</u>
- Curvilinear elements
- Overhead of parallel AMR at each time-step: less than 1%

Idea based on Fischer, Kruse, Loth (02)

 $\sum_{k} \frac{d}{dt} \int_{\Omega_{k}} u = -\sum_{m} \int_{\Gamma_{m}} (\mathbf{F}_{num}(\mathcal{I}_{M}^{N}u_{l}, u_{r}) - \mathbf{F}_{num}(u_{r}, \mathcal{I}_{M}^{N}u_{l})) \cdot \hat{\mathbf{n}} = 0$

New Rosenbrock W

• With Dan Stanescu: University of Wyoming

New Rosenbrock W

• With Dan Stanescu: University of Wyoming

Consider a two dimensional partitioning of the problem in numerical integration of large-scale models

- Multiphysics: additive partitioning
 different physics have different dynamics and integrators with appropriate properties are required
- Multiscale: component partitioning
 - mesh refinement and variable wave speed restrict the global timestep
- Advection-Diffusion-Reaction:

$$\frac{\partial y}{\partial t} = -u\nabla y + \frac{1}{\rho}\nabla(\rho K \nabla y) + \frac{1}{\rho}C(\rho y)$$

MOL: time dependent PDE => ODE

$$\frac{\partial y}{\partial t} = A(y) + D(y) + R(y)$$
$$y = [y_1, y_2, \cdots, y_N]^T$$

(Courtesy of Adrian Sandu VTU)

Propose multirate partitioned Runge-Kutta methods for component partitioning – MPRK2

Consider the following (base) Runge-Kutta method:

C	Δ		$\gamma_1 c$	$\gamma_1 A$	0	С	A	0
ι	Л		$\gamma_1 \mathbb{1} + \gamma_2 c$	$\gamma_1 \mathbb{1} b^T$	$\gamma_2 A$	С	0	A
	b^T			$\gamma_1 b$	$\gamma_1 b$		$\gamma_1 b$	$\gamma_2 b$

Multirate partitioned Runge-Kutta method MPRK2:

• Emil M. Constantinescu and Adrian Sandu, Multirate timestepping methods for hyperbolic conservation laws; Journal of Scientific Computing, Vol. 33(3), pp 239-278, 2007.

Numerical experiments confirm the theoretical results for a linear example

(Courtesy of Adrian Sandu VTU)

 $\Delta t/m$

 $\Delta x/m$

 Δt

 Δx

Numerical experiments confirm the theoretical results for a nonlinear example

(Courtesy of Adrian Sandu VTU)

CDI-type 2 proposal

- Multi-institutional:VTU, UW, U Geneva, U Louvain la Neuve, U Nice Sophia-Antipolis
- Expertise in: time-stepping, optimal solvers, high/loworder methods, software engineering, HPC, Krylov subspace methods, adjoints, TLM.
- Goal: The discovery of efficient computational methods for multiscale adaptive, multidisciplinary physics on petascale system
- Build an all scales simulation framework

CDI-type 2 proposal

- <u>NCAR</u>: J. Tribbia, P. Smolarkiewicz and A. St-Cyr, D. Rosenberg, D. Neckels and A. Wyszogrodzki
- <u>UW</u>: D. Mavriplis and D. Stanescu
- <u>VTU</u>: A. Sandu
- <u>U Geneva</u>: M. J. Gander
- <u>Sophia-Nice-Antipolis</u>:V. Dolean

Thank you!

