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Goal



• Establish a roadmap for most-productive use of petascale 
computing systems for improving our knowledge of 
important geophysical dynamical processes.

Goal



Where are we now?

Courtesy M. Taylor and J.P. Edwards

• HOMME-APE CAM 3.0 physics

• Hydrostatic formulation

• 13km resolution (global)

• (Also global WRF: nonhydrostatic)LLNL BG/L
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• Explicit / split-explicit time-stepping

• “Uniform” or structured meshes

• Science this enables:

• “Seasonal” climate modeling

• Next step “Weekly” climate modeling?

• Next step “Daily” climate modeling??
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• Explicit / split-explicit time-stepping

• “Uniform” or structured meshes

• Science this enables:

• “Seasonal” climate modeling

• Next step “Weekly” climate modeling?

• Next step “Daily” climate modeling??

Where are we now?

Stuck in a weak scaling paradigm 



• Idealized model (no I/O, explicit ts, structured mesh...) 

• Producing scientifically significant integration rates for 
climate ( 5 sypd @ 4km) will require increase in 
compute horsepower of the order of 10^4 to 10^6 !!!

•  Moore’s Law: will happen in 13 to 20 years...

• What can we do?

Where are we now?



Improve algorithms
used in geosciences...



Algorithms in 
geosciences

• Time-integration: explicit, split-explicit, semi-
implicit, implicit, LMM, RK, Multi-rate, IMEX ... 

• Space integration: SEM, DGM, FDM, FVM, RBF,...

• Elliptic problems: direct methods, iterative 
methods: KSP, multi-grid, preconditioning ... 

• Optimization techniques



• Assumptions for HOM:

Time-stepping

• Elements:

• Points/Elements:

• Tensor products cost:

• Matrix vector cost:

• Fast diagonalization where possible
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N
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d+1



• Potential for acceleration:

Time-stepping

Method: Cost:

Explicit

Semi-implicit

Fully implicit

O(keEN
d+1)

O(ks[ENd+1 + kkE(N/s)d+1 + E(N/s)d+1])

O(ki[REN
d+1 + EN

3d π4

90
])



Method: Acceleration:

Explicit

Semi-implicit

Fully implicit

(For gravity waves) N=300 in 2D and N=8 in 3D

• Potential for acceleration:

Time-stepping

a ≤
∆ti

c̃

ν
[R/N2 + 1.2N2d−3]

a ≤
1

EN2

a ≤
sd+1

c̃[(1 + sd+1)/m + 1]



Examples of acceleration



SISL
• Semi-Implicit + Semi-Lagrangian

• Gravity waves and advective time-scale

• Proposed by A. Robert (81)

• Parallel issues in its classical version...

• Use idea of Maday et al. (90)

• N-L version for sw: (A and Thomas 05)

• Acceleration is 4 wrt explicit version

• Problem solved! ... 



Problem: find integrating factor,         such that               ,

ODE resulting from SEM discretization (MOL)
du(t)

dt
= S(u(t)) + F (u(t)), t ∈ [0, T ]

d

dt
Qt

∗

S (t) · u = Qt
∗

S (t) · F (u).

u(0) = u0

Qt
∗

S (t) Qt
∗

S (t∗) = I

v
(t∗,t)(0) = u(t)

with initial condition 

dv(t∗,t)(s)

ds
= S(v(t∗,t)), 0 ≤ s ≤ t − t∗

To find the action of          solve:

with initial condition

Qt
∗

S (t)

SISL



Comparison with reference solution from NCAR pseudo 
spectral core
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Why is this important?

We want to model all scales in time and space...

Combining SISL with AMR leads to a contradiction!



dt=120s



dt=360s



dt=720s



dt=120s

Conclusion: not a true multiscale algorithm ...



Fully implicit
• DG in space for Euler equations: WRF form

• New Rosenbrock W-method

• No non-linear cycles (Newton)

• No Jacobians: Jacobian free

• Low Mach preconditioning 

• Element block Jacobi

• Results on benchmark tests

• Acceleration: 3 to 45 wrt to explicit version



Effects of low Mach

time 
step

W LM accel WO LM accel

1.0s 30 3.2 33 2.8

2.0s 36 5.1 45 4.1

10.0s 69 13.5 103 9.1

50.0s 207 22.7 493 10.2

“Wicker” Bubble:  Wicker and Skamarock MWR02

solver tolerance  ~ 1E-6, (Nx,Nz)=(16,8), p=7,
180 meters resolution (approx.)



Rising bubble

5 meters resolution, p =7, Tf = 600 secs



Rising bubble

5 meters resolution, p =7, Tf = 600 secs



• Inertia gravity wave in channel + bg flow

• dx=dz=500m, poly order 8, nez=3, nex=90

• dt=12, 25, 50, 75, 100 seconds

• Accelerations: 2.7, 3.9, 4.6, 4.7, 4.8 wrt 
explicit

• 20 m/s  to the right

Inertia Gravity wave

Skamarock and Klemp 02
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Inertia Gravity wave
• Eady model (one more equation + Coriolis)

• Very thin channel (hydrostatic: shallow atm)

• 1 element in the vertical

• 600 in the horizontal (1km x 1km resolution)

• p=7

• accel > 45

Skamarock and 
Klemp 02
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Semi (or full) implicitness
leads to a matrix to 

invert...



Solvers
• Storing full LU impossible: 

• Iterative method unavoidable

• Multigrid: is 

• Two-levels Schwarz is optimal 

• If parabolic PDE no coarse solver needed 
(semi-implicit behaves this way!)

• For Laplacian high-order has a       growth

• Non-overlapping optimized Schwarz

O(N)

N
4



Classical Schwarz

Lu = f in Ω, Bu = g on ∂Ω

Suppose we need to solve:

Partition the original domain into 2 domains:
Lun+1

1 = f in Ω1, Lun+1
2 = f in Ω2,

B(un+1
1 ) = g on ∂Ω1, B(un+1

2 ) = g on ∂Ω2,

un+1
1 = un

2 on Γ12, un+1
2 = un

1 on Γ21.

Ω1 Ω2

Γ21 Γ12



Convergence rates
OPTIMIZED SCHWARZ METHODS 705
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Fig. 4.1. Convergence factor ρcla of the classical Schwarz method (top curve) as a function of k,
compared on the left to ρT0 (middle curve) and ρT2 (bottom curve) of the optimized Schwarz methods
with zeroth and second order transmission conditions, respectively, obtained by Taylor expansion,
and on the right compared to the OO0 and OO2 Schwarz methods, and the optimized Schwarz method
with two-sided optimized Robin transmission conditions, which lies in between OO0 and OO2.

choice of transmission conditions for the model problem with two subdomains, overlap
L = 1

100 and problem parameter η = 1, together with the classical convergence factor
ρcla. First one can clearly see that the optimized Schwarz methods are uniformly
better than the classical Schwarz method; in particular the low-frequency behavior
is greatly improved. The maximum of the convergence factor of classical Schwarz
is about 0.980, whereas the maximum of the convergence factor with zeroth order
Taylor condition is 0.568 and the maximum with second order Taylor condition is
0.449 in this example. Hence the classical Schwarz method needs about 28 iterations
to obtain the contraction factor of one iteration of the optimized Schwarz method
with zeroth order Taylor conditions, and about 40 iterations are needed to obtain
the contraction of one iteration of the optimized Schwarz method with second order
transmission conditions from Taylor expansion.

As we mentioned earlier, the classical Schwarz method does not converge without
overlap: for L = 0 we obtain ρcla(k, 0, η) = 1 and hence convergence is lost for all
modes. Optimized Schwarz methods, however, can be used without overlap, and
nonoverlapping Schwarz methods can be of great interest, if the physical properties
in the subdomains differ, for example, when there are jumps in the coefficients of the
equation as in [20] or the nature of the equations changes, like in the case of coupling
of hyperbolic and parabolic problems; see, for example, [18] and references therein.
If we set L = 0 in the convergence factor (4.4) of the optimized Schwarz method, the
exponential term becomes one, but the factor in front remains unchanged, and thus
ρT0(k, 0, η) < 1 and ρT2(k, 0, η) < 1 for all k. In a numerical implementation there is
a maximum frequency which can be represented on a grid with grid spacing h. An
estimate for this maximum frequency is kmax = π

h . Hence the slowest convergence for
the optimized Schwarz method without overlap and Taylor transmission conditions
is obtained for the highest frequency: the method is a rougher as opposed to the
smoother the classical Schwarz method is.

In practice, even when using the Schwarz method with overlap, the overlap is
often only a few grid cells wide, and thus L = O(h). In that case the convergence
factor of the classical Schwarz method deteriorates as well as one refines the mesh and
h goes to zero and we have the following comparison theorem.

Theorem 4.2. The optimized Schwarz methods with Taylor transmission con-
ditions and overlap L = h have an asymptotically superior performance than the

Classical Schwarz

Taylor zeroth order and second 
order

Optimized zeroth and second order 
with two-sided zeroth order 
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AMR

• Comparison of SEM with FVM (SJDTT 08)

• Both non-conforming dynamic approaches

• Uses tests from literature

• Cubed sphere (SEM) lat-lon (FVM)

• At comparable errors SEM more efficient 

• Runs below 1/3 degrees on 16 processors!

• SEM 6.5 times faster on realistic test

a) SEM

b) FV

FIG. 2: Adaptive grids on the sphere in (a) SEM and (b) FV. The adapted elements on the cubed-

sphere (SEM) and adapted blocks in latitude-longitude geometry (FV) refine an idealized mountain

as indicated by the contour lines.

45



Galewski et al. 2004 test

For our adaptive simulations we select the vorticity-based dynamic refinement criterion |ζ | ≥

3× 10−5 s−1. This refinement criterion flags the whole zonal jet region for refinement at the initial

state. Both models are re-initialized to guarantee an improved initial representation of the zonal jet

area. Figure 14 shows four snapshots of the adaptive SEM and FV simulations with four refinement

levels and overlaid adapted elements and blocks. Both models start with a coarse 5◦×5◦ resolution

so that the smallest block sizes represent a 0.3125◦ × 0.3125◦ grid. The refined areas closely track

the evolving barotropic wave that develops rapidly after model day 4. This is demonstrated by the

newly refined spectral elements and blocks that overall cover very similar regions. At day 6 the

barotropic wave has formed mature vortices and thin vorticity filaments that are present in both

the adapted and uniform runs. It can be seen that the adapted SEM and FV simulations converge

towards the high-resolution reference solutions as depicted in Figs. 13e and j. The differences

between the adaptive SEM and FV solutions are very small.

5. Conclusions

In this paper, two shallow water models with adaptive mesh refinement capabilities were com-

pared. The models are an interpolation-based spectral element model (SEM) on a cubed-sphere

grid and a conservative and monotonic finite volume model (FV) in latitude-longitude geometry.

Both adaptive mesh approaches utilize a quad-tree AMR technique that reduces the mesh spacings

by a factor of two during each refinement step. Coarsenings reverse this adaptations principle.

Then four “children/leaves” are coalesced which doubles the grid distances. In SEM, the refine-

ment strategy targets the spectral elements which contain additional Gauss-Legendre and Gauss-

Lobatto-Legendre collocation points for scalar and vector components. In FV, the adaptations are

applied to a block-data structure in spherical coordinates which consists of a fixed (self-similar)

block size. These blocks are surrounded by ghost cell regions which require interpolation and

averaging procedures at fine-coarse mesh interfaces. No ghost cells areas are needed in SEM. In

both models neighboring elements or blocks can only differ by one refinement level. This leads to
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0.3125 degrees...
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FIG. 10: Time traces of the normalized l2 geopotential height error norms for the flow over a

mountain (test case 5). The adaptive simulations with three refinement levels (0.625◦ × 0.625◦

at the finest level) and several uniform-resolution runs are compared to a T426 spectral transform

reference solution.
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High-resolution solution DWD (German weather service)

Flow impinging a mountain

SEM error 10 times lower than FVM

To generate same error one more ref in FVM: 6.5 slower than SEM



Take home message:

• Efficient time-stepping

• Unstructured adaptive meshes

• Optimal solvers



Take home message:

• Efficient time-stepping

• Unstructured adaptive meshes

• Optimal solvers

Can enable us to beat Moore’s barrier



• AMR h-p + unstructured meshes:

• Resolutions of 1km possible on petascale machine: 10 km easily

• Below 1km if exascale considered: 

• Adaptation criteria based on a goal: global temperature

• Multi-method time-stepping:

• Can mix any time-stepping scheme with provable error

• Yields load balancing in space and time

• All processes performed at their ideal time-scale

• One big step with macro steps in-bedded

• Multigrid p-based solvers with demonstrated efficiency

• Algorithmic implementation flexibility:

• Unstructured meshes: mesh planet, mesh ocean, mesh Sun, mesh mantle’s 
core, mesh cities, mesh boxes, mesh mesh mesh... HOM makes this viable

• Jacobian free: change the equations but same algorithms

ESMs algorithm vision

cdi



Current efforts



DGNH+AMR

• With D. Neckels ESMF

• Curvilinear elements

• Overhead of parallel AMR at each time-step: 
less than 1%

Using the Legendre basis to perform the
non-conforming integral

1 Performing the integral

From (09-28-2007) we had:

∑

k

d

dt

∫

Ωk

u = −
∑

m

∫

Γm

(Fnum(IN
Mul, ur)− Fnum(ur, IN

Mul)) · n̂ = 0 (1)

which from property (A) gives is known to give conservation. It is possible
by using the Legendre basis to represent the test functions to perform this
integral only for the constant mode using one quadrature rule and another
one for the remaining modes. When the integral is performed we have

I =
h

2

∫ 1

−1
vk(ξ) Fnum(ul, ur)(ξ) · n̂dξ (2)

on each edge where vk is the test function. It is possible to represent the latter
in the Legendre basis (starting from 1):

vk(ξ) =
N∑

m=1

v̂m
k Lm(ξ). (3)

Replacing in the expression for the integral leads to

I =
h

2

∑

j

N∑

m=1

ρj v̂
m
k Lm(ξj) Fnum(ul, ur)(ξj) · n̂. (4)

The constant mode is the mode preserving the mass v̂1
k. Therefore we propose

the following splitting of the sums:

I =
h

2

∑

j′
ρ̃j′ v̂1

kLm(ξj′) Fnum(ul, ur)(ξj′) · n̂

+
h

2

∑

j

ρj

N∑

m=2

v̂m
k Lm(ξj) Fnum(ul, ur)(ξj) · n̂ (5)

where ρ̃j′ is a quadrature using a different number of points (to satisfy the con-
servation) at non-conforming interfaces while ρj is the weights of the quadra-
ture rule normally employed on the element associated with the edge. Thus

Preprint submitted to Elsevier 30 September 2007

Idea based on Fischer,  
Kruse, Loth (02)
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New Rosenbrock W
• With Dan Stanescu: University of Wyoming
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additive partitioning

Consider a two dimensional partitioning of the problemConsider a two dimensional partitioning of the problem

in numerical integration of large-scale modelsin numerical integration of large-scale models
co
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t p
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n
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g

! Advection-Diffusion-Reaction:

! MOL: time dependent PDE => ODE

IMIMEXEX

! Multiphysics: additive partitioningMultiphysics: additive partitioning

! different physics have different
dynamics and integrators with
appropriate properties are required

! Multiscale: component partitioningMultiscale: component partitioning

! mesh refinement and variable wave
speed restrict the global timestep
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macro step

(Courtesy of Adrian Sandu VTU)



Propose multirate partitioned Runge-Kutta methods forPropose multirate partitioned Runge-Kutta methods for

component partitioning component partitioning –– MPRK2 MPRK2

! Consider the following (base) Runge-Kutta method:

! Multirate partitioned Runge-Kutta method MPRK2MPRK2:

Fast component: CFL = m x c Slow component: CFL = c

! Emil M. Constantinescu and Adrian Sandu, Multirate timestepping methods for hyperbolic conservation laws;and Adrian Sandu, Multirate timestepping methods for hyperbolic conservation laws;

Journal of Scientific Computing, Vol. 33(3), pp 239-278, 2007.Journal of Scientific Computing, Vol. 33(3), pp 239-278, 2007.



Numerical experiments confirm the theoretical resultsNumerical experiments confirm the theoretical results

for a linear examplefor a linear example

! The solution of advection equation – the fine

grid is moving along with the wave profile:

(wave passing through
a fixed interface)

(Courtesy of Adrian Sandu VTU)



1X

2X

3X

Initial

Final

Stable

Unstable

Numerical experiments confirm the theoretical resultsNumerical experiments confirm the theoretical results

for a nonlinear examplefor a nonlinear example

Burgers’
equation

(Courtesy of Adrian Sandu VTU)



• Multi-institutional: VTU, UW, U Geneva, U Louvain la 
Neuve, U Nice Sophia-Antipolis

• Expertise in: time-stepping, optimal solvers, high/low-
order methods, software engineering, HPC, Krylov 
subspace methods, adjoints, TLM.

• Goal: The discovery of efficient computational methods 
for multiscale adaptive, multidisciplinary physics on 
petascale system

• Build an all scales simulation framework

CDI-type 2 proposal



• NCAR: J. Tribbia, P. Smolarkiewicz and A. St-Cyr, D. 
Rosenberg, D. Neckels and A. Wyszogrodzki

• UW: D. Mavriplis and D. Stanescu

• VTU: A. Sandu

• U Geneva: M. J. Gander

• Sophia-Nice-Antipolis: V. Dolean

CDI-type 2 proposal



Thank you!


