HIGH RESOLUTION SIMULATIONS OF OCEAN BOUNDARY LAYERS WITH STOCHASTIC WAVE BREAKING

Peter P. Sullivan

Mesoscale & Microscale Meteorology National Center for Atmospheric Research

Contributions: Jim McWilliams (UCLA), Ken Melville (SIO) Edward Patton (NCAR)

Sponorsed by: Office of Naval Research and NCAR Opportunity Fund

BACKGROUND/MOTIVATION

- The ocean boundary layer (OBL) plays an important role in geophysical flows despite its limited vertical extent $h \leq O(100m)$
- Climate prediction, weather forecasts, air-sea coupling, biology, ...
- Upper ocean mixing is especially critical for hurricane evolution

Shuyi Chen, RSMAS

IMPACT OF OCEAN MIXED LAYER TEMPERATURE ON HURRICANE EVOLUTION IN WESTERN PACIFIC

Depends on SST, mixed layer depth *h*, entrainment of cool water

LIN ETAL, 2005, 27th Conference on Hurricanes and Tropical Meteorology

MODELING THE UPPER OCEAN BOUNDARY LAYER

- Traditional view: OBL is the upside down atmospheric boundary layer driven by constant wind stress au
- What's the role (if any) for surface waves?
 - Near surface injection of momentum and energy by breaking waves $l \leq \mathcal{O}(0.1\,h)$
 - Langmuir circulations resulting from phase averaged wave-current interactions, *viz.*, Craik-Leibovich (CL2) instabilities $l \sim O(h)$

HIGH WIND SURFACE DYNAMICS WAVE BREAKING AND LANGMUIR CIRCULATIONS

Intermittent fluxes of momentum and energy

Hurricane Isabel CBLAST Photo courtesy P. Black (Miami)

Wave-averaged effects

Great Salt Lake Photo courtesy S. Monismith (Stanford)

MODELING OF WAVE IMPACTS ON CURRENTS

• Craik-Leibovich asymptotics

- Wave orbital speeds are large compared to the currents
- Surface waves produce a Stokes drift $\mathbf{u}^{St}(z)$
- Momentum equations are augmented by a phase-averaged "vortex force" $\mathbf{u}^{St} imes \boldsymbol{\omega}$

• Discrete event wave breaking model

- Compact 3D impulses replace uniform surface stress $\langle au
 angle$
- Breakers are drawn from a PDF $p(c) \sim f(U_a, C_p/u_*)$
- Breakers are located at random surface sites
- Breaker production rate \dot{N} matches long-time large-area average atmospheric wind stress and energy flux

BREAKER PDF FOR VARYING WINDS AND WAVE AGE

LES OCEAN MODEL WITH WAVE EFFECTS

EDDY DIFFUSIVITY FOR MOMENTUM $\langle u'w' \rangle = -K_m \partial \langle u \rangle / \partial z$

SURFACE WAVES AND OCEAN MIXING

- LES results with explicit wave effects show surface waves modulate OBL currents, scalar transport, and promote non-local mixing
- How did this happen?
- Depth filling coherent structures emerge from the interactions between waves, currents, and turbulence
 - Primary agent is wave-current interactions
 - Combination of wave-current interactions and breaking generates the largest response, but depends on wave age c_p/u_{*a}

PARTICLE PATHS OVERLAYING VORTICITY CONTOURS UNIFORM STRESS (no breaking) $U_{10} = 5m/s$

T = 0 s

l**f**

VERTICAL VORTICITY ω_z NEAR WATER SURFACE

X-Y SURFACE PATTERNS OF VERTICAL VORTICITY, z = -1m, WINDS = 15m/s

X-Z PATTERN OF VERTICAL VELOCITY W AND U-CURRENT

``WHAT IF "

HURRICANE PASSAGE OVER LES DOMAINS INERTIAL RESPONSE

HURRICANE PASSAGE OVER LES DOMAINS INERTIAL RESPONSE

COUPLING WAVES AND INERTIAL RESPONSE IN A HIGH WIND DRIVEN OBL

Wind speed $U_a = 30 \text{ ms}^{-1}$

- Smallest breaker modeled $t_b = 1 \text{ s}$
- Wave-current interactions $t_{St} = 20$ s
- Large eddy turnover time $t_t = 2900 \text{ s}$
- Inertial period $t_i = 62,800 \text{ s}$

LES domain and time step

- $\bigtriangleup t \sim 0.5~{\rm s}$
- $\bigtriangleup x \sim 1.0 \ \mathrm{m}$
- $(N_x, N_y, N_z) \sim (1000, 1000, 256)$
- Number of time steps $N_s \sim [400,000 \sim 500,000]$ steps

Vary translation speed V_s and LES domain locations

GOAL: IMPACT ON SST AND MIXED LAYER COOLING

``MORE PARALLELISM"

MASSIVELY PARALLEL ALGORITHM FOR BOUSSINESQ BOUNDARY LAYERS

Algorithm Constraints:

- Utilize 2-D domain decomposition
- Employ a mixed pseudospectral finite-difference scheme
- Incompressible flow must solve $\nabla^2 p = s$

Highlights:

- Employ local MPI matrix transposes to evaluate derivatives and solve for the pressure: $f(x, y_s: y_e, z_s: z_e) \Leftrightarrow f^T(y, x_s: x_e, z_s: z_e)$ $\hat{s}(k_y, k_{xs}: k_{xe}, z_s: z_e) \Leftrightarrow \hat{s}^T(z, k_{xs}: k_{xe}, k_{ys}: k_{ye})$
- No ALLTOALLV global communication, use SENDRECV
- Use MPI I/O, single large direct-access like file

MASSIVELY PARALLEL ALGORITHM FOR BOUSSINESQ BOUNDARY LAYERS

Algorithm Constraints:

- Utilize 2-D domain decomposition
- Employ a mixed pseudospectral finite-difference scheme
- Incompressible flow must solve $\nabla^2 p = s$

Highlights:

- Employ local MPI matrix transposes to evaluate derivatives and solve for the pressure: $f(x, y_s: y_e, z_s: z_e) \Leftrightarrow f^T(y, x_s: x_e, z_s: z_e)$ $\hat{s}(k_y, k_{xs}: k_{xe}, z_s: z_e) \Leftrightarrow \hat{s}^T(z, k_{xs}: k_{xe}, k_{ys}: k_{ye})$
- No ALLTOALLV global communication, use SENDRECV
- Use MPI I/O, single large direct-access like file

MASSIVELY PARALLEL ALGORITHM FOR BOUSSINESQ BOUNDARY LAYERS

Algorithm Constraints:

- Utilize 2-D domain decomposition
- Employ a mixed pseudospectral finite-difference scheme
- Incompressible flow must solve $\nabla^2 \, p = s$

Highlights:

- Employ local MPI matrix transposes to evaluate derivatives and solve for the pressure: $f(x, y_s: y_e, z_s: z_e) \Leftrightarrow f^T(y, x_s: x_e, z_s: z_e)$ $\hat{s}(k_y, k_{xs}: k_{xe}, z_s: z_e) \Leftrightarrow \hat{s}^T(z, k_{xs}: k_{xe}, k_{ys}: k_{ye})$
- No ALLTOALLV global communication, use SENDRECV
- Use MPI I/O, single large direct-access like file

SCALING OF PARALLEL PSEUDOSPECTRAL ALGORITHM WITH 2-D DOMAIN DECOMPOSITION

Cray XT4, NERSC E. Patton, NCAR

SCALING OF PARALLEL PSEUDOSPECTRAL ALGORITHM WITH 2-D DOMAIN DECOMPOSITION

Cray XT4, NERSC E. Patton, NCAR

FREE CONVECTION 512³ W-FIELD

PARTICLE TRACING IN X-Y PLANE 1024³ SIMULATION

TEMPORAL EVOLUTION OF VORTICES IDENTIFIED BY LOW (NEGATIVE) PRESSURE

3800 m

z = 24 m

Dust devil image courtesy NASA

SUMMARY

- Simulations of turbulent atmospheric and oceanic boundary layers are prime candidates for petascale computing
 - Highly parallel algorithm for Boussinesq boundary layers
 - Boundary layer domains with fine resolution
 - Small mesoscale domains with well resolved turbulence
- Coupling of complex surface layer dynamics with PBL turbulence
- Stable (nocturnal) PBLs
- Canopy turbulence, scalar mixing, land surface heterogeneity
- Turbulent dispersion with stratification
- Boundary layer clouds & chemistry
- • •
- Adequacy of the SGS parameterization, $\Delta_f \sim \mathcal{O}(\Lambda) \iff \mathbf{OBSERVATIONS}$

VARIATION OF MIXED LAYER TEMPERATURE

SURFACE WAVES AND OCEAN MIXING

- LES results with explicit wave effects show surface waves modulate OBL currents, scalar transport, and promote non-local mixing
- How did this happen?

CRAIK-LEIBOVICH ASYMPTOTICS

- Assumptions for multiple-time scale analysis
 - Surface waves produce a drift in the wind direction
 - Wave orbital speeds are larger than the currents
 - Wave period is short compared to the time scale for current development
- Critical result momentum equations are augmented by a "vortex force" $\mathbf{u}^{St}\times\boldsymbol{\omega}$
 - \mathbf{u}^{St} is the Stokes drift of the wavefield
 - ω is the resolved vorticity

COUPLING OF CL2 INSTABILITY AND AN ISOLATED BREAKER

DISCRETE EVENT WAVE BREAKING MODEL

Breaker properties:

- Events are 3D, compact, impulses $A_b(\mathbf{x}, \mathbf{t})$
- Stochastic surface sites
- Breaker phase speed c is drawn from a PDF $p(c) \sim e^{-\beta \, c/u_{\ast a}}$
- Breaker production rate $\dot{N}(U_a)$ matches mean wind stress and energy flux

Momentum conservation:

$$\underbrace{\rho_a C_D U_{10}^2 Area}_{Air} = \underbrace{\dot{N} \int_0^c p(c) M(c) dc}_{Water}$$

Breaker momentum:

$$M(c) = \rho_w \int_0^{T(c)} dt \int_{-\infty}^0 dz \int_{-\infty}^\infty dy \int_0^\infty dx A_b(\mathbf{x}, c)$$

Gulf of Tehuantepec U ~[20-25] m/s

COURTESY OF KEN MELVILLE

VERTICAL VELOCITY SKEWNESS WITH WAVE EFFECTS

COUPLING WAVES AND INERTIAL RESPONSE IN A HIGH WIND DRIVEN OBL

Wind speed $U_a = 30 \text{ ms}^{-1}$

- Smallest breaker modeled $c_b \sim 2 \mathrm{m/s} \rightarrow t_b = 1 \mathrm{s}$
- Wave-current interactions $C_p \sim 1.2U_a = 36 \text{ m/s} \rightarrow t_{St} = 20 \text{ s}$
- Large eddy turnover time $(h,u_*) \sim (100m, 0.034m/s) \rightarrow t_t = 2900 \ {\rm s}$
- Inertial period $2\pi/f \rightarrow t_i = 62,800 \text{ s}$

LES domain and time step

- $riangle t \sim 0.5 \; {\rm s}$
- $riangle x \sim 1.0 \ {\rm m}$
- $(N_x, N_y, N_z) \sim (1000, 1000, 256)$
- Number of time steps $N_s \sim [400,000 \sim 500,000]$ steps

Vary translation speed V_s and LES domain locations

GOAL: IMPACT ON SST AND MIXED LAYER COOLING

X-Y SURFACE PATTERNS OF VERTICAL VELOCITY, z = -1m, WINDS = 30m/s

UNIFORM STRESS PLUS VORTEX FORCE

VORTEX FORCE PLUS WAVE BREAKING

OBL LES EXPERIMENTS WITH WAVE EFFECTS

Problem Design

- Moderate to high winds, $U_a = [15 30] \text{ m/s}$
- Fetch limited wave height spectrum, Donelan (1985)

Parameter Variations

- Uniform surface stress au no wave effects
- Uniform surface stress with vortex force no breaking
- Stochastic breaking no vortex force
- Mixed runs with breaking + vortex force for varying wave age

Algorithm

- Mixed pseudospectral finite-difference scheme
- Runge Kutta time stepping
- FFTPACK routines
- Custom transpose routines for pressure solver
- Parallelization
 - MPI decomposition in z-direction (limiting)
 - OMP threads in x y planes (complicated)

SCALING OF PARALLEL PSEUDOSPECTRAL ALGORITHM WITH 2-D DOMAIN DECOMPOSITION

Cray XT4, NERSC E. Patton, NCAR

