Clear Air Turbulence (CAT) Simulation and Observation: Implications for Parameterization

Joe Werne, Tom Lund, Dave Fritts, Ling Wang, Kam Wan
NWRA/CoRA, Boulder, CO

Bjørn Anders Pettersson-Reif, Øyvind Andreassen
Forsvarets forskningsinstitutt, Kjeller, Norway

Don Wroblewski
Boston University, Boston, MA

Mark Berliner
Ohio State University, Columbus, OH

NCAR, May 2008
Joe Werne
Observations of CAT layers with mu-rass in Japan

Example of turbulent layers observed with mu-rass in Japan. Layers range from 100-150m (resolution limit) up to 1km. Some layers persist over 4-day observing period and are seen to be rejuvenated on a diurnal time scale.
High-Resolution Radar Backscatter

\[Re = \frac{UL}{\nu} \approx 10^6 - 10^7 \]

120 m
Estes Park, Colorado, 1979 (photo by Bob Perney)
Colorado Springs, Colorado, 2000 (photo by Tye Parzybok)
Denver, Colorado, 1953 (photo by Paul E. Branstine)
Lafayette, Colorado, 2002 (photo by Joe Werne)
Noctilucent Clouds, Kustavi, Finland, 1989 (photo by Pekka Parviainen)
Modeling challenges for stably stratified clear air turbulence:

- Turbulence is episodic and spatially confined
- Fossil events can serve to precondition future events
- Depths of most isolated layers are subgrid scale
- Mixing can be non-local, with gravity waves providing remote subgrid-scale momentum transfer

Noctilucent Clouds, Kustavi, Finland, 1989 (photo by Pekka Parviainen)
CAT layers: What are their signatures?

Coulman, Vernin & Fuchs, Applied Optics 34 5461 (1995)
CAT layers: How typical or rare are they?

Coulman, Vernin & Fuchs, Applied Optics 34 5461 (1995)
CAT layers: What are their characteristics?

1992 CAT Event

- 9 Dec 1992 Front Range windstorm, Evergreen, CO
- DC-8 Cargo aircraft encounters two full minutes of intense turbulence
- Left engine and 12-feet of wing ripped from plane
- Pilot landed safely at Stapleton

Unresolved CAT: Is It Important?

50 years of U2 flights
- U2 reconnaissance - 50 years of high-altitude experience
- Many aborted missions due to high-altitude wave activity
- Damaged / destroyed aircraft
- One pilot killed

1997 CAT Event
- 29 Dec 1997, United flight 826 to Honolulu from Japan
- Boeing 747 encountered severe turbulence at 33,000 ft
- Dropped 1000 ft, 110 passengers injured, 1 killed

The New York Times
December 29, 1997
Jet Hits Turbulence; 110 Hurt and a Woman Dies

A United Airlines jumbo jetliner with 393 people aboard hit severe air turbulence over the Pacific Ocean on Sunday night, killing one Japanese woman and injuring 110 other passengers.

Passengers and serving carts were flung to the ceiling as the plane dived 1,000 feet when it flew into the turbulence at 33,000 feet, officials said.

The plane, flight 826 bound for Honolulu with 374 passengers and 19 crew members, flew back safely to Narita, Tokyo’s main international airport, and landed at 2:25 A.M.

The officials said a 32-year-old Japanese woman died and 10 passengers were injured seriously enough to remain in hospitals.

The dead passenger, who was not immediately identified by airline officials, was flung to the ceiling and died shortly after she was taken to a hospital, officials said.
50 years of U2 flights

- U2 reconnaissance - 50 years of high-altitude experience
- Many aborted and damaged high-altitude missions
- One pilot killed

1997 CAT Event

- 29 Dec 1997, United flight 826 to Honolulu from Japan
- 393 people aboard hit turbulence: 1 dead, 110 injured
- The plane, flight 826 bound for Honolulu with 374 passengers and 19 crew members, flew back safely to Narita, Tokyo's main international airport, and landed at 2:25 A.M.
- The officials said a 32-year-old Japanese woman died and 10 passengers were injured seriously enough to remain in hospitals.
- The dead passenger, who was not immediately identified by airline officials, was flung to the ceiling and died shortly after she was taken to a hospital, officials said.

What can we do about simulating/modeling?

Can we anticipate intense events without increasing computational cost?

What about (slightly) smaller-scale events?

- Adaptive mesh refinement algorithms
- Mountain Wave Forecast Model (MWFM)
- Probabilistic modeling (Poulos & Burns 2003)
Wind Shear Simulation

\[U = U_0 \tanh(z/h) \]

\[T = \beta z \]

- Stream-function/vorticity formulation of the Boussinesq equations
- Fully spectral, 3D FFT’s = 80% cost
- Radix 2,3,4,5 FFTs
- Spectral modes and NCPUs must be commensurate
- Communication: shmem and MPI, global transpose (all-to-all), data reduction
- Parallel I/O every \(\sim 60 \delta t \)
- Up to 4000 x 2000 x 2000 modes
- 6 Grand Challenge and 2 DoD CAP awards
- Logged over 10 million CPU hours; generated over 300 Tbytes of archived data

\[
\begin{align*}
Ri &= \frac{N^2 h^2}{U_0^2} \\
Re &= \frac{U_0 h}{\nu} \\
Pe &= \frac{U_0 h}{\kappa}
\end{align*}
\]

\[
\begin{align*}
\partial_t u + \omega \times u &= Re^{-1} \nabla^2 u - \nabla P + Ri \theta \hat{z} \\
\partial_t \theta + u \cdot \nabla \theta &= Pe^{-1} \nabla^2 \theta \\
\nabla \cdot u &= 0
\end{align*}
\]
\[U = U_0 \tanh(z/h) \]

\[\frac{Ri}{Re} = \frac{N^2h^2}{U_0^2} \quad Re = \frac{U_0h}{\nu} \quad Pe = \frac{U_0h}{\kappa} \]

\[\partial_t u + \omega \times u = Re^{-1}\nabla^2 u - \nabla P + Ri \theta \hat{z} \]

\[\partial_t \theta + u \cdot \nabla \theta = Pe^{-1}\nabla^2 \theta \]

\[\nabla \cdot u = 0 \]
Hi-Res Wind-Shear Simulations
Hi-Res Wind-Shear Simulations

Extensive validation using balloon, radar, and aircraft data resulted in:

- Agreement with flow morphology deduced from cloud imagery, previous work
- Measured atmospheric mean profiles for wind, temperature, C_n^2, and Ri
- Structure-function scaling $\sim 2/3$ and $2/5$, consistent with later aircraft measurements.
- Turbulence inner scale $\ell_0 = 7.4 \ell_K$, consistent with tower data.

2nd-order structure functions for T and U

- Dynamic SGS LES with gradient-diffusion model cannot be validated due to small box size. Need larger domain to make LES progress.
DoD CAP Wind-Shear Simulations

Original Domain

New Domain
24 x
Spectral Code Parallel Efficiency

C, 10^{-6} seconds

NCPU

Cray XT3

NCAR, May 2008 Joe Werne NWRA/CoRA 18
Vortex tubes viewed from above, $Ri=0.05$

$t=54$: secondary instability

$t=68$: KE, PE local minima

$t=85$: KE, PE secondary maxima

$t=111$: turbulence intensity and vorticity maxima
Vortex tubes viewed from above, $Ri=0.20$

$t=37$: maximum laminar amplitude

$t=54$: maximum billow amplitude, turbulence erupts in billow cores

$t=66$: PE peaks

$t=82$: turbulence reaches braids
Ri=0.05: vortex tubes viewed from above

t=54 : secondary instability
Ri=0.05: vortex tubes viewed from above

t=68 : KE, PE local minima
Ri=0.05: vortex tubes viewed from above

\[t=85 : \text{KE, PE secondary maxima} \]
Ri=0.05: vortex tubes viewed from above

t=111: turbulence intensity and vorticity maxima
Ri=0.20: vortex tubes viewed from above

t=37 : maximum laminar amplitude
Ri=0.20: vortex tubes viewed from above

t=54: maximum billow amplitude, turbulence erupts in billow cores
Ri=0.20: vortex tubes viewed from above

t=66 : PE peaks
Ri=0.20: vortex tubes viewed from above

t=82 : turbulence reaches braids
KE and max(ω) evolution

Ri = 0.05

Ri = 0.20
Mean and variance evolution

- Mean Temperature Deviation (βh)
- Normalized Temperature Variance (βh)
- Mean Velocity (U_w)
- Normalized Velocity Variance (U_w)

Variance Normalization:
- $\max(qq)$
- $\max(TT)$ (Ri)

t, time (h/U_w)

NCAR, May 2008
Joe Werne
NWRA/CoRA
Comparison with Recent Aircraft Measurements

Grob G520T Egrett (Airborne Research Australia)

- Altitude: up to 15 km
- Airspeed: 100 m/s
- Endurance: 8 hrs
- 3 NOAA BAT probes (under wings and high on tail)
- T and (U,V,W) at 50 Hz (2 m horizontal resolution)
Comparison with Recent Aircraft Measurements

Simulation Results $Ri=0.20$

Aircraft Data (Wales)

- θ (K)
- U (m/s)
- V (m/s)
- W (m/s)

x, Horizontal Position (km)

x, Horizontal Position (h)

X (km)

X (km)
Comparison with Recent Aircraft Measurements

Simulation Results $Ri=0.15$

Aircraft Data (Wales)

Figure 1: Potential temperature and velocity: (a) aircraft data for 000606, 11.4 km. (b) DNS for $Ri=0.2$, $z/H=0$, $tU_0/h=77.72$.74.
Comparison with Recent Aircraft Measurements

Simulation Results $Ri=0.05$

Aircraft Data (Wales)

High Pass Filtered

U, V, W: 000606 11.4 km

θ (K)

U (m/s)

V (m/s)

W (m/s)

x, Horizontal Position (h)

X (km)

$\frac{U_0}{h} = 77.72$
Comparison with Recent Aircraft Measurements

Simulation Results Ri=0.05

Aircraft Data (Wales)

Observed Cliff-Ramp structures are much more consistent with the High-Ri simulation results:

1. T-cliffs are consistently sharp
2. U rises sharply at T-cliff
3. W fluctuations are suppressed in braid region
4. No observed large-scale variation in W at most-unstable KH wavelength
Comparison with Recent Aircraft Measurements

Simulation Results $Ri=0.05$
Aircraft Data (Wales)

Observed Cliff-Ramp structures are much more consistent with the High-Ri simulation results:

1. T-cliffs are consistently sharp
2. U rises sharply at T-cliff
3. W fluctuations are suppressed in braid region
4. No observed large-scale variation in W at most-unstable KH wavelength

Why the inconsistency?

1. KH clouds nearly always appear as deep, round, low-Ri billows,
2. while cliff-ramp structures in the aircraft measurements are consistent only with high-Ri flows.

1. The most obvious feature of every data set is reported first.
2. Clouds are too large to visualize shallow high-Ri layers.
Despite dramatic differences with Ri, universal features exist.

Final layer depth vs Ri

$L = 1.5 \, Ri^{-1/2} - 0.05$

Mid-layer N/S Evolution

Final $N/S = 1.05$ ($Ri = 0.55$)

time scales with $Ri^{-1/2}$

$\sqrt{2Ri}$
Finding our way in the *terra incognita*

Yesterday John Wyngaard described the *terra incognita* between mesoscale-model and LES-model resolutions.

- Prof. Wyngaard proposed SGS-model improvements to address this middle land for model resolution.
- Additional improvements will likely be required as well.
- Partially resolved dynamics require sophisticated SGS models that can anticipate motions in the energy-containing portion of the spectrum and represent their effects.
- Propagating waves, overturning wind-shear, and wave/mean-flow interactions at or below the model cut-off scale can be important.

Fig. 1. A schematic of the turbulence spectrum $\phi(\kappa)$ in the horizontal plane as a function of the horizontal wavenumber magnitude κ. Its peak is at $\kappa \sim 1/l$, with l the length scale of the energetic eddies; Δ is the scale of the smoothing filter. In the mesoscale limit (left), $\Delta_{\text{meso}} \gg l$ and none of the turbulence is resolved. In the LES limit (right), $\Delta_{\text{LES}} \ll l$ and the energy-containing turbulence is resolved.
Finding our way in the *terra incognita*

In order to capture the effects of unresolved or partially resolved dynamics, SGS models must be knowledgeable of the dynamical motions at or near (including below) the model filter scale.

Important unresolved processes must be included in a probabilistic manner to ensure they are represented by the model.

Examples of stochastic forcing used near the cut-off length scale to include the effects of unresolved turbulent processes include:

1. The current ECMWF ensemble forecast model.
2. ‘Stochastic backscatter’ in LES studies of the atmospheric boundary layer.

To address the *terra incognita*, we are investigating using existing DNS solutions combined with observations to improve current stochastic physics and/or stochastic backscatter methods by specifying more defensible probability distributions.

Bayesian SGS Modeling

\(A = \) quantity you want to predict, e.g., \(\tau_{ij}, f_i, G_i, \Delta T^2, \ldots \)

\(F = \) NWP forecast variables, e.g., \(T, P, U, V, W, \ldots \)

\(Y_i = \) important unknowns, e.g., \(L_i, \Delta U_i, \Delta T_i, Ri^{(o)}_i, a_i, Re_i, z_i, \ldots \)

atmospheric turbulence patch parameters (layer depth, velocity and temperature jump, local Richardson number, age, Reynolds number, altitude, ...)

prediction takes form of a joint probability distribution:

\[
[A, F] = \int [A, F, Y] \, dY
\]

where \(Y \) represents a collection of layers: \([Y] = [Y_1, Y_2, \ldots, Y_N] \)

notation:

\([a] \) - probability of \('a'\)
\([a, b] \) - joint probability of \('a'\) and \('b'\)
\([a | b] \) - conditional probability of \('a'\) given \('b'\)
Bayesian SGS Modeling

\[A = \text{quantity you want to predict, e.g., } \tau_{ij}, f_i, G_i, \Delta T^2, \ldots \]

\[F = \text{NWP forecast variables, e.g., } T, P, U, V, W, \ldots \]

\[Y_i = \text{important atmospheric jumps, i.e., } X_i \]

where \(Y_i \) = important atmospheric jumps

Advantages

1. Permits inclusion of measurement results directly.
2. Produces model uncertainty estimates naturally.
3. Relieves SGS model of convenient mathematical assumptions (e.g., universal turbulence range, mixing length model, eddy viscosity, etc.).
4. Allows incorporation of complex physics, even if not completely understood.

\[[a] - \text{probability of } 'a' \]
\[[a, b] - \text{joint probability of } 'a' \text{ and } 'b' \]
\[[a | b] - \text{conditional probability of } 'a' \text{ given } 'b' \]
Some layers Y will be resolved and some will have to be modeled. Therefore, we split the integral at $L_i = \Delta$, where Δ is the NWP model cut-off length scale.

$$[A, F] = \int_0^\Delta [A \mid F, Y] [F \mid Y] [Y] dY + \int_\Delta^\infty [A \mid F, Y] [Y \mid F] [F] dY$$

Bayesian SGS Modeling

Turbulence climatology and/or real-time observations

Estimate with ensemble runs or knowledge of F uncertainty

Filtered climatology realizations

Resolved by NWP or secondary model

Determined predominantly by F or Y subject to A's sensitivity to large- or small-scale processes.
Bayesian SGS Modeling

\[
[A, F] = \int_0^\Delta [A | F, Y] [F | Y] [Y] \, dY + \int_\Delta^\infty [A | F, Y] [Y | F] [F] \, dY
\]

Turbulence climatology and/or real-time observations

Filtered climatology realizations

Determined predominantly by \(F \) or \(Y \) subject to \(A \)'s sensitivity to large- or small-scale processes.
Bayesian

\[
[A, F] = \int_0^\Delta [A | F, Y] [F | Y] [Y] dY + \int_\Delta^{\infty} [A | F, Y] [Y | F] [F] dY
\]

Determined predominantly by \(F \) or \(Y \) subject to \(A \)'s sensitivity to large- or small-scale processes.

Layer statistics (depth, \(\Delta U, \Delta T, Ri \))

Turbulent or real-life circumstances.

Filtered climatology realizations.
Layer PDFs assume well-defined universal shapes, independent of location.

\[
[A, F] = \int_0^\Delta [A \mid F, Y] [F \mid Y] [Y] \, dY + \int_\Delta^\infty [A \mid F, Y] [Y \mid F] [F] \, dY
\]

Turbulent or real-time filtered climatology realizations

Determined predominantly by F or Y subject to A's sensitivity to large- or small-scale processes.
Bayesian SGS Modeling

\[[A, F] = \int_{0}^{\Delta} [A | F, Y] [F | Y] [Y] dY + \int_{\Delta}^{\infty} [A | F, Y] [Y | F] [F] dY \]

- Turbulence climatology and/or real-time observations
- Filtered climatology realizations
- Determined predominantly by F or Y subject to A’s sensitivity to large- or small-scale processes.
Determined predominantly by F or Y subject to A’s sensitivity to large- or small-scale processes.

\[Ri = \frac{g \alpha \frac{\partial z T}{\partial z U}}{\left(\frac{\partial z U}{\partial z U}\right)^2} \]
Conditional PDFs and Model Filtering Effects

\[[A, F] = \int_0^{\Delta} [A | F, Y] [F | Y] \]

Filtered climatology

Determined predominantly by F or Y subject to A's sensitivity to large- or small-scale processes.

\[Ri = \frac{g \alpha \partial_z T}{(\partial_z U)^2} \]
Conditional PDFs and Model Filtering Effects

- bad news is deterministic predictability is lost above 300m filter width (considered high vertical resolution).
- petascale computing with an adaptive-mesh mesoscale model could in principle resolve these layers, but with the price of overhauling existing community codes or writing new codes (Scott McRae).
- good news is conditional PDFs assume a well-defined universal shape.

\[[A, F] = \int_0^\Delta [A | F, Y] [F | Y] \]

Filtered climatology ratio

Determined predominantly by F or Y subject to A’s sensitivity to large- or small-scale processes.

\[Ri = \frac{g \alpha \partial_z T}{(\partial_z U)^2} \]
Bayesian SGS Modeling

\[[A, F] = \int_0^\Delta [A | F, Y] [F | Y] [Y] dY + \int_\Delta^\infty [A | F, Y] [Y | F] [F] dY \]

Turbulence climatology and/or real-time observations

Filtered climatology realizations

Determined predominantly by F or Y subject to A’s sensitivity to large- or small-scale processes.
Bayesian SGS Modeling

Obtain from high-resolution numerical simulation, lab experiment, or whatever you can get your hands on.

\[[A, F] = \int_0^\Delta [A | F, Y] [F | Y] [Y] dY + \int_\Delta^{\infty} [A | F, Y] [Y | F] [F] dY \]

- Turbulence climatology and/or real-time observations
- Filtered climatology realizations
- Determined predominantly by F or Y subject to A's sensitivity to large- or small-scale processes.
Conclusions

1. Shear and gravity-wave dynamics produce layered turbulence that is episodic in time.

2. The unresolved dynamics are important and their likelihood of occurrence must be modeled.

3. Measurements demonstrate infrequent but significant deep CAT events and numerous less important shallow CAT events that produce near-universal PDFs that can be characterized by two parameters (mean and variance).

4. DNS results for turbulent shear have been validated with balloon, radar, and aircraft data, and clear deviations from isotropic theory are seen for both the DNS and the observations.

5. Different morphology and evolution exists for weakly and strongly stratified events, permitting identification of the initial Ri in aircraft data.

6. Gravity-wave-breaking simulations demonstrate amplitude reductions from 1.1 to 0.3, far in excess of conventional linear saturation theory. Expect different degree of amplitude reduction for different frequency waves.

7. We have defined a Bayesian framework for probabilistic SGS formulations.

Ongoing Work

2. Developing needed BHM conditional PDFs from DNS results.