Challenges in PBL and Innovative Sensing Techniques

Walter Bach Army Research Office walter.d.bach@us.army.mil

Current Sensing Systems

- Designed to support aviation raobs, sfc.
 wx
- Modified network for NWP
- Integration of satellite clouds, sfc.
 radiance
- ACARS added
- Wind profilers troposphere, PBL
- Dense sfc. systems often urban

Look to Future Needs & Users

- Small scales (0.01< X <10 km; 10 < t < 10³ sec)
 - Urban Meteorology
 - Wind Energy
 - CBRN Dispersion
 - Military Operations
 - Public Health / Air Quality
 - Surface Transportation

Forecast Challenges - PBL

- Heterogeneity
- Surface Layer u_{*}, Q_{*}, H_{*}, stability
- Vertical distributions of V, T, q, tke, ε, Ri
- BL height $-Z_i$, thickness of inversion
- Turbulence Parameterization
- Clouds / Radiation
- Precipitation
- Terrain elevation, soils, moisture
- Meeting user needs

Observing Challenges

- Continuity, Correlation & Coherence across scales
- Continuity of special observing systems
- Few opportunities for sustained analyses
- PBL is 4-dimensional
- Volumetric measurement capability
- Rapid memory loss @ high resolution means rapid refresh rate
- Interaction with users and modelers

Some Approaches

- Doppler Wind Lidars
 - Paired planar winds, virtual towers
 - Airborne
 - Satellite
 - Turbulence Profiler (concept)
- Backscatter Lidar
- Radar
 - FM/CW wind profiler
 - NetRad Distributed Network
- Acoustic Tomography
- Temperature & Moisture Profilers

Surrace Based Doppler wind Lidars

Ron Calhoun, Arizona State

Airborne Doppler Wind Lidar

David Emmitt, Simpson Weather Assoc.

50 m DZ 30 sec

DWL wind speed profile vs. MM5 same grid volume & time

Derived 10 m Wind Field

Yansen Wang, Army Res. Lab.

3DWF Domain for Salinas Valley area 10m AGL Wind (initialized with Lidar data)

Used 20 Lidar profiles

Army 3DWF Diagnostic model

Smoke Plume

Low-cost Remote Wind Profiling SBIR Phase I

- Dr Scott Shald Coherent Technologies Inc -

Low Power NetRad Antennas

Specifications:

- 1 m x 1 m X-band antennas
- 2D Electronic scanning
- 2 degree pencil beam
- Dual linear (V & H) polarization
- 14 degree elevation; 90 degree azimuth scan
- 10's Watt average power
- \$10k target cost per panel (in 2005 dollars, projected 10 years ahead)

CASA Distributed Radar Network

Goal: Map winds below 3 km with 500 m resolution

David McLaughlin, U. Mass

- Avg. Separation 25.3 km
- Coverage 6947 km²
- 98% coverage below NEXRAD
- 41% coverage is dual-Doppler (2850 km²)
- 25% coverage below 250 m
- Avg. AGL NetRad 364 m
- Avg. AGL NEXRAD 1000 m

Acoustic Tomography

Vladimir Ostashev, NMSU & CIRES

NCAR REAL Lidar

Backscatter 6 m range gate

