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Wall turbulence

•

 

Refers to a broad class of turbulent flows bounded by a surface:
–

 

Atmospheric boundary layer

–

 

Boundary layer on ocean floor

–

 

Flows over aircraft, ships, submarines, etc.

–

 

Flows over turbine blades, blades of windmills, etc.

•

 

These flows are extremely difficult to study both experimentally

 

and 
computationally.

–

 

As such, the simplest (canonical) cases have received the vast majority 
of research attention despite most practical flows of interest occurring 
in the presence of significantly more complexity.

•

 

High Reynolds numbers (Re)

•

 

Other influences: Surface roughness, pressure gradients, curvature, free-

 
stream effects, multiple phases, buoyancy, etc.

•

 

Coherent structures play a pivotal role in the evolution of such

 

flows.
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Boundary-layer wind tunnel

•

 

Low-speed suction wind tunnel

•

 

Test section: 1m ×

 

1m cross-

 
section; 6m streamwise fetch

•

 

Boundary-layer thickness:      
~100 mm

•

 

Free-stream velocities:                   
3 < U∞

 

< 40 m/s

•

 

Reynolds-number range:        
1000 < Reθ

 

< 15000                   
300 < δ+

 

< 5000

test section

Inlet and flow 
conditioning
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Particle image velocimetry (PIV)

•

 

Illumination: Pulsed laser 
(Nd:YAG)

•

 

Imaging: Highly sensitive CCD 
cameras

•

 

Tracer particles: sub-micron olive 
oil droplets

•

 

RESULT: Velocity resolved 
instantaneously with high spatial 
resolution (10−20y*

 

) over planar 
domain comparable to the outer 
length scale in moderate 
Reynolds-number wall-bounded 
turbulence. 

laser

camerawind-tunnel 
test section
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Outer-layer structure of wall turbulence

Adrian, Meinhart and Tomkins (2000), JFM

Head of hairpin vortex
(“prograde”

 

spanwise vortex)

x

z

y
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Assessing the importance of underlying structure

•

 

It is now well established that an underlying structural foundation 
exists in wall-bounded turbulent flows.

–

 

What role do these structures play in the turbulence statistics (single-

 

as 
well as multi-point)?

–

 

What are the basic characteristics of this organization?
–

 

What role might this structural foundation play in turbulence modeling 
and control?

•

 

Challenges
–

 

Structures must be effectively extracted from the background 
turbulence.

•

 

Galilean decomposition (visualization in the reference frame of structure)
•

 

Local vortex markers

–

 

Analysis methodologies must be devised to study their importance

 

and 
impact on the overall flow.

•

 

Spatial correlations
•

 

Conditional averaging
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Galilean decomposition of representative instantaneous 
PIV velocity field
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Galilean decomposition reveals only those vortices 
traveling at the chosen advection velocity
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Vortex identification: Swirling strength (λci )

•

 

Swirling strength (λci ) is the imaginary portion of the complex 
conjugate eigenvalues of the local velocity gradient tensor (Zhou et 
al., 1999; Chakraborty et al., 2005).

–

 

Unambiguous measure of rotation

–

 

Frame independent

–

 

Unlike vorticity, does not identify regions of intense shear

•

 

For planar velocity data, one must employ a 2D version of the local 
velocity gradient tensor.

–

 

Will have either 2 real or a complex-conjugate pair of eigenvalues

0ciλ ≥
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Galilean decomposition of representative instantaneous 
PIV velocity field
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Associated Λci field
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Local Galilean decomposition around Λci events
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Outer-layer structure of wall turbulence

Adrian, Meinhart and Tomkins (2000), JFM

Head of hairpin vortex
(“prograde”

 

spanwise vortex)

x

z
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Outer-layer structure of wall turbulence: x−y plane
Flow
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Outer-layer structure of wall turbulence: x−y plane
Flow

Hairpin heads
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Outer-layer structure of wall turbulence: x−y plane
Flow

Ejection events
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Outer-layer structure of wall turbulence: x−y plane
Flow

Inclined 
interfaces 
formed by 

hairpin heads
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Outer-layer structure of wall turbulence: x−y plane
Flow

Induced low- 
momentum 

regions 
(LMR’s)
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Outer-layer structure of wall turbulence: x−y plane

Turbulent capillary flow 
R = 0.268 mm

 
Reτ

 

= 167

 
Micro-PIV result

Macroscale turbulent 
channel flow 
h = 25.0 mm

 
Reτ

 

= 550

 
Lightsheet PIV result

~50 μm

~1.8 mm

Natrajan, Yamaguchi and 
Christensen (2007), Microfluidics 
and Nanofluidics 3(1)
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Vortex population statistics
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Vortex advection velocities: TBL

Mean profile

Retrograde

Prograde

Wu and Christensen (2006), JFM

y+=100

y/δ=0.75y/δ=0.25
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Histograms of advection velocities

Wu and Christensen (2006), JFM
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Outer-layer structure of wall turbulence

Adrian, Meinhart and Tomkins (2000), JFM
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Outer-layer structure of wall turbulence: x−z plane
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Outer-layer structure of wall turbulence: x−z plane
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Outer-layer structure of wall turbulence: x−z plane



NCAR Workshop
May  29, 2008

Laboratory for Turbulence and Complex Flow
University of Illinois at Urbana-Champaign

Outer-layer structure of wall turbulence: x−z plane
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Contributions of LMR’s to single-point statistics

•

 

Define low-momentum threshold and identify gridpoints satisfying 
the threshold:

•

 

Average quantity of interest, S, satisfying threshold:

Threshold −〈u 'v '〉 〈u '2〉 〈v '2〉 〈w '2〉 〈q 2〉 Space occupied
0.9U 46% 43% 14% 29% 34% 21%
0.8U 18% 16% 4% 5% 12% 4%
0.7U 1.3% 1.2% 0.3% 0.1% 0.8% 0.2%

y = 0.065δ
 

(y+=200)
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‘Super’-structures at y = 0.065δ

Flow

0.5δ

10δ

x
z

Iso-contours of 
regions where 

u<U(y=0.065δ)

⇒ Elongated LMR’s
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Statistical imprints of structure

•

 
Do hairpin vortices and their organization into larger-scale 
vortex packets leave their imprint upon the spatial statistics of 
wall turbulence?
–

 

Patterns must occur often.

–

 

Characteristics must not vary appreciably in order to survive the 
averaging process.

•

 
Two-point spatial correlations
–

 

Streamwise velocity (ρuu )

–

 

Swirling strength (ρλλ

 

)

•

 
Conditional averaging based on dominant structural 
characteristics 
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ρuu in x–y plane at y=0.15δ

β

Consistent with inclined LMR’s 
beneath interface formed by 

hairpin heads

( ) ( ) ( )
( ) ( )
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uu ref
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u x y u x x y
x y y

y y
ρ

σ σ
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Inclination angle of ρuu

Smooth
Rough
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ρuu in x–z plane at y=0.15δ
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ρλλ
 

in x–y plane at y=0.15δ

Consistent with 
streamwise- 

aligned hairpin 
heads inclined 
slightly away 

from wall
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ρλλ
 

in x–z plane at y=0.15δ

Again consistent 
with streamwise- 
aligned hairpin 

structures
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Conditional average of the velocity field can therefore be estimated via unconditional 
two-point spatial correlations: 

Linear stochastic estimate of this conditional average:

Conditional averaging to reveal characteristics and 
importance of embedded structure

Example: What is the most probable velocity field associated with a spanwise 
vortex core?

( ) ( )j ciu λ′x x

( ) ( ) ( )j ci ciu Lλ λ′ ≈x x x

( ) ( ) ( )ref, , ,u x ci j xR r y x y u x r yλ λ= +

( ) ( )
( ) ( )
( ) ( ) ( )ci j

j ci ci
ci ci

u
u

λ
λ λ

λ λ

′
′ ≈

x x
x x x

x x

Minimization of mean-square error yields

Christensen and Adrian (2001), JFM
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( ) ( )j ciu λ′x x in turbulent BL at δ+=3000
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y/
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Statistical imprint of outer-layer vortex organization

Christensen and Adrian (2001), JFM
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Another example: Large-eddy simulation (LES)

•

 

IDEA: Only resolve a subset of the dynamically-important spatial 
scales in order to reduce the overall cost of the computation.

–

 

Larger scales are solved for directly while the smaller scales are modeled 
in some fashion.

–

 

One can run an LES at a much higher Re for the same cost as a lower-Re 
direct numerical simulation (DNS).

•

 

Implementation
–

 

Equations of motion are low-pass filtered, yielding a set of “filtered”

 
equations for the resolved scales.

•

 

Difficulties
–

 

One must define a spatial-scale boundary between the resolved and 
unresolved scales as well as an appropriate filtering methodology.

–

 

The influence of the smaller (unresolved) scales on the evolution of the 
larger (resolved) scales must be modeled.

–

 

What role do hairpin vortex packets play in SGS physics?
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LES governing equations
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: Represents the energy transfer across the boundary between the resolved and 
unresolved scales.



NCAR Workshop
May  29, 2008

Laboratory for Turbulence and Complex Flow
University of Illinois at Urbana-Champaign

Qualitative description of SGS energy transfer
Representative turbulent energy spectrum

εsgs

 

>0: Energy transfer from the resolved to the unresolved scales ⇒ Forward scatter

εsgs

 

<0: Energy transfer from the unresolved to the resolved scales ⇒ Backward scatter

Δ: Filter length scale

Resolved scales
Modeled scales

~Δ-1

 

⇒ Boundary between resolved and unresolved scales

εsgs

 

<0

εsgs

 

>0

Adapted from Pope (2000)
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Instantaneous forward scatter
Flow

Line contours of λci 
highlight locations of 
vortex cores

Natrajan and Christensen (2006), Phys. Fluids 18(6)
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x/h

y/
h

y/
h

Instantaneous backscatter

Natrajan and Christensen (2006), Phys. Fluids 18(6)
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Conditional average of the forward scatter and backscatter fields can therefore be 
estimated via unconditional two-point spatial correlations  

Linear stochastic estimate of the conditionally averaged dissipation field given a 
vortex core:

Statistical analysis

Best estimate of the average forward scatter (or backscatter) fields induced by a 
hairpin vortex and a vortex packet is                           .( ) ( )ciλ′Φ x x

( ) ( ) ( )ci ciLλ λ′Φ ≈x x x

( ) ( ) ( )ref, , ,x ci xR r y x y x r yλ λΦ = Φ +

( ) ( ) ( ) ( )
( ) ( ) ( )ci

ci ci
ci ci

λ
λ λ

λ λ

′Φ
′Φ ≈

x x
x x x

x x

Minimization of mean-square error yields
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Contours of                  

Forward scatter given a hairpin head

refat 0.15f
ci yφ λ δ=

Overlaid is (Christensen and Adrian, 2001)j ciu λ′

Natrajan and Christensen (2006), Phys. Fluids 18(6)
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Backscatter given hairpin head

Contours of                  refat 0.15b
ci yφ λ δ=

Overlaid is (Christensen and Adrian, 2001)j ciu λ′

Natrajan and Christensen (2006), Phys. Fluids 18(6)
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Contributions to forward and backward scatter

11 11 ciSτ λ− %

12 12 ciSτ λ− %

22 22 ciSτ λ− %

Natrajan and Christensen (2006), Phys. Fluids 18(6)
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Overlaid are contours of  

Most probable velocity field given a forward scatter 
event

f fφ φ
Vector field illustrating

f
ju φ′

Natrajan and Christensen (2006), Phys. Fluids 18(6)
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Most probable velocity field given a backward scatter 
event

Overlaid are contours of  
b bφ φ

Vector field illustrating
b

ju φ′

Natrajan and Christensen (2006), Phys. Fluids 18(6)
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Instantaneous backscatter revisited

Flow

Natrajan and Christensen (2006), Phys. Fluids 18(6)
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•

 

Forward scatter around a hairpin head is coincident with the ejection 
induced by the vortex due to             . The most intense forward scatter is 
observed via additional contributions from             when this

 

ejection is 
countered by a sweep event which collectively generate an inclined shear 
layer.

•

 

In addition to the localized backscatter observed upstream/above

 

and 
downstream/below each hairpin head, the most intense backscatter

 

is 
observed at the trailing end of a hairpin vortex packet, particularly when a 
second packet is observed upstream.             is the dominant contributor to 
backscatter events.

Conceptual model of structural contributions to 
SGS dissipation

12 12Sτ− %

11 11Sτ− %

11 11Sτ− %

Natrajan and Christensen (2006), Phys. Fluids 18(6)
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Summary

•

 

Whatever the experimental/computational protocol employed, 
identification of coherent structures in data is pivotal to 
understanding the evolution of turbulent flows.

•

 

Robust identification methodology must be applied
–

 

“Quality”

 

of data can impact choice

•

 

Once structures are identified, key challenge lies in extracting

 

their 
influence and importance.

–

 

Success tightly coupled to clarity of goals

–

 

Conditional averaging methods can be extremely helpful in this regard

–

 

Key is choosing appropriate averaging conditions
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