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Wall turbulence

« Refers to a broad class of turbulent flows bounded by a surface:
— Atmospheric boundary layer
— Boundary layer on ocean floor
— Flows over aircraft, ships, submarines, etc.
— Flows over turbine blades, blades of windmills, etc.

« These flows are extremely difficult to study both experimentally and
computationally.
— As such, the simplest (canonical) cases have received the vast majority

of research attention despite most practical flows of interest occurring
in the presence of significantly more complexity.

« High Reynolds numbers (Re)

 Other influences: Surface roughness, pressure gradients, curvature, free-
stream effects, multiple phases, buoyancy, etc.

« Coherent structures play a pivotal role in the evolution of such flows.
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Boundary-layer wind tunnel

Inlet and flow
conditioning

« Low-speed suction wind tunnel

« Test section: 1m x 1m Cross-
section; 6m streamwise fetch

« Boundary-layer thickness:
~100 mm

e Free-stream velocities:
3<U_<40m/s

« Reynolds-number range:
1000 < Rey < 15000
300 < 0t < 5000
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Particle image velocimetry (PIV)

laser

e Illumination: Pulsed laser

(Nd:YAG)

- Imaging: Highly sensitive CCD
cameras

« Tracer particles: sub-micron olive
oil droplets

- RESULT: Velocity resolved
instantaneously with high spatial
resolution (10—-20y.) over planar
domain comparable to the outer
length scale in moderate
Reynolds-number wall-bounded
turbulence.

wind-tunnel camera
test section
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Outer-layer structure of wall turbulence

Head of hairpin vortex 7
(“prograde” spanwise vortex)
Adrian, Meinhart and Tomkins (2000), JFM
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Assessing the importance of underlying structure

« It is now well established that an underlying structural foundation
exists in wall-bounded turbulent flows.

— What role do these structures play in the turbulence statistics (single- as
well as multi-point)?

— What are the basic characteristics of this organization?

— What role might this structural foundation play in turbulence modeling
and control?

« Challenges
— Structures must be effectively extracted from the background
turbulence.
 Galilean decomposition (visualization in the reference frame of structure)
« Local vortex markers
— Analysis methodologies must be devised to study their importance and
impact on the overall flow.
 Spatial correlations
« Conditional averaging
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traveling at the chosen advection velocity
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Vortex identification: Swirling strength (A1)

 Swirling strength (1) is the imaginary portion of the complex
conjugate eigenvalues of the local velocity gradient tensor (Zhou et

al., 1999; Chakraborty et al., 2005).
— Unambiguous measure of rotation
— Frame independent
— Unlike vorticity, does not identify regions of intense shear

« For planar velocity data, one must employ a 2D version of the local
velocity gradient tensor.
— Will have either 2 real or a complex-conjugate pair of eigenvalues
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Local Galilean decomposition around A events
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Outer-layer structure of wall turbulence

Head of hairpin vortex 7
(“prograde” spanwise vortex)
Adrian, Meinhart and Tomkins (2000), JFM
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Outer-layer structure of wall turbulence: x-y plane
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Outer-layer structure of wall turbulence: x-y plane
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Outer-layer structure of wall turbulence: x-y plane
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Outer-layer structure of wall turbulence: x-y plane
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Outer-layer structure of wall turbulence: x-y plane
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Outer-layer structure of wall turbulence: x-y plane
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Vortex advection velocities: TBL
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Histograms of advection velocities
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Outer-layer structure of wall turbulence

Head of hairpin vortex 7
(“prograde” spanwise vortex)
Adrian, Meinhart and Tomkins (2000), JFM
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Outer-layer structure of wall turbulence: x—z plane
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Outer-layer structure of wall turbulence: x—z plane
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Outer-layer structure of wall turbulence: x—z plane
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Outer-layer structure of wall turbulence: x—z plane
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Contributions of LMR’s to single-point statistics

e Define low-momentum threshold and identify gridpoints satisfying
the threshold:

) 1. when u(x;, z;) < Uy,
(xj, 25 Up) = { Y

0, otherwise,
« Average quantity of interest, S, satisfying threshold:

{i (): ((*fh U P Z Z Z 5 r;j, *-'j IRAE (.-'Tth_ )

alle allz j=1
y = 0.06506 (y*=200)
Threshold | —(u'v?") (u'z) (v'z) (w'z) (q2> Space occupied

0.9U 46% 43% 14% 29% | 34% 21%
0.8U 18% 16% 4% 5% 12% 4%
0.7U 1.3% 1.2% 0.3% 0.1%| 0.8% 0.2%
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‘Super’-structures at y = 0.0650

Iso-contours of
regions where
u<U(y=0.0659)

= Elongated LMR’s
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Statistical imprints of structure

« Do hairpin vortices and their organization into larger-scale
vortex packets leave their imprint upon the spatial statistics of

wall turbulence?
— Patterns must occur often.
— Characteristics must not vary appreciably in order to survive the
averaging process.

« Two-point spatial correlations
— Streamwise velocity (o,,)
— Swirling strength (p,,)

« Conditional averaging based on dominant structural
characteristics

Laboratory for Turbulence and Complex Flow NCAR Workshop
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0Oy, 1N X=Y plane at y=0.150
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Inclination angle of p,,
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0Oy, 1N X—2Z plane at y=

0.150
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0,,1n X—y plane at y=0.150
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0,,1n X—z plane at y=0.150
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Conditional averaging to reveal characteristics and
importance of embedded structure

Example: What is the most probable velocity field associated with a spanwise
vortex core?
(u; (X)) 24 (%))

Linear stochastic estimate of this conditional average:

(u, (X)| 2 () = L (%)

Minimization of mean-square error yields

oty ey a0 ()
< j( ) ( )> <2’Ci(x)lci(x)>ici( )

Conditional average of the velocity field can therefore be estimated via unconditional
two-point spatial correlations:

R, (T, y):</1Ci (X, Yyer U (X 41, y)>

Christensen and Adrian (2001), JFM

A

Ci
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X")[ A (X)) 1n turbulent BL at 6*=3000
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Another example: Large-eddy simulation (LES)

« IDEA: Only resolve a subset of the dynamically-important spatial
scales in order to reduce the overall cost of the computation.
— Larger scales are solved for directly while the smaller scales are modeled
in some fashion.

— One can run an LES at a much higher Re for the same cost as a lower-Re
direct numerical simulation (DNS).

« Implementation

— Equations of motion are low-pass filtered, yielding a set of “filtered”
equations for the resolved scales.

o Difficulties

— One must define a spatial-scale boundary between the resolved and
unresolved scales as well as an appropriate filtering methodology.

— The influence of the smaller (unresolved) scales on the evolution of the
larger (resolved) scales must be modeled.

— What role do hairpin vortex packets play in SGS physics?

Laboratory for Turbulence and Complex Flow NCAR Workshop

University of Illinois at Urbana-Champaign May 29, 2008



LES governing equations

4 ~
a,
Filtered continuity ) X
and momentum ou. 5(ji(jj 1 0p 820i az-ij
= —— _|_ VvV —
L ot 0X, P OX. OX;0X;  OX;
Subgrid-scale (SGS) stresses T = Qiuj —a.a j
09°/2 _ o04°/2  100;p ol

Filtered kinetic energy +0U.

ot o p OX,  OX

]
0°G°/2 ol ou,

14 -V — Eqygs
OXOX; OX; OX;

_|_

~

SGS dissipation Eggs = ~ T

&5+ Represents the energy transter across the boundary between the resolved and
unresolved scales.
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Qualitative description of SGS energy transfer

Representative turbulent energy spectrum

Resolved scales «—
— Modeled scales

A: Filter length scale

& L&F 1568, wake 33

1 ULF 1969, wake 308
10 1971, god turk, T2
0 Chasspagns 1970 ham. slear 130
10 &M 1965, BLAD
Laufier 1934, ppes 170
ln-l Tielman 1967, BL 282
Ed BAV 1966, geld furb. 580
lnﬂZ * Bl 1991, chansel 53
CAHI 1991, returs channel 3130

107 F % G 19t a0
10°F ° T
R 19TL, gnd b, 37
ln‘s L] SRV 1594, Bl &00
SRV 15994, BL 1500
105 Adapted from Pope (2000)

10t 107 1wt 10? 10? Tcr‘ 10° 10
K ~A™ = Boundary between resolved and unresolved scales

£,s>0: Energy transfer from the resolved to the unresolved scales = Forward scatter

£,:<0: Energy transter from the unresolved to the resolved scales = Backward scatter
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Instantaneous forward scatter
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Instantaneous backscatter
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Statistical analysis

Best estimate of the average forward scatter (or backscatter) fields induced by a
hairpin vortex and a vortex packet is <CI) (X')] A (x)> :

Linear stochastic estimate of the conditionally averaged dissipation field given a
vortex core:
<CD (X')| Ay (x)> ~ LA (x)

Minimization of mean-square error yields

((x)| 4 (x)) = 8: N j’((ii (%)

Conditional average of the forward scatter and backscatter fields can therefore be
estimated via unconditional two-point spatial correlations

Rio (rx’ y) :<’1ci (X’ Yref )(D(X+ 1 y)>

Laboratory for Turbulence and Complex Flow NCAR Workshop
May 29, 2008

University of Illinois at Urbana-Champaign



Forward scatter given a hairpin head
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Backscatter given hairpin head
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Contributions to forward and backward scatter
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Most probable velocity field given a forward scatter
event
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Most probable velocity field given a backward scatter
event
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Flow .
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Conceptual model of structural contributions to
SGS dissipation

I Backscatter
[ Forward scatter @)

« Forward scatter around a hairpin head is coincident with the ejection
induced by the vortex due to —7,,S,, . The most intense forward scatter is
observed via additional contributions from —z,,S,;, when this ejection is
countered by a sweep event which collectively generate an inclined shear
layer.

« In addition to the localized backscatter observed upstream/above and
downstream/below each hairpin head, the most intense backscatter is
observed at the trailing end of a hairpin vortex packet, particularly when a
second packet is observed upstream. —7,,S,; is the dominant contributor to
backscatter events.
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Summary

« Whatever the experimental/computational protocol employed,
identification of coherent structures in data is pivotal to
understanding the evolution of turbulent flows.

« Robust identification methodology must be applied
— “Quality” of data can impact choice

« Once structures are identified, key challenge lies in extracting their
influence and importance.

— Success tightly coupled to clarity of goals
— Conditional averaging methods can be extremely helpful in this regard
— Key is choosing appropriate averaging conditions

Laboratory for Turbulence and Complex Flow NCAR Workshop

University of Illinois at Urbana-Champaign May 29, 2008
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