Identifying Vortical Structures and Their Impact From Laboratory Studies of Wall Turbulence

K. T. Christensen

Students: Y. Wu and V. K. Natrajan

Laboratory for Turbulence and Complex Flow (LTCF) Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign Urbana, IL 61801 USA

Supported by AFOSR, NSF and the University of Illinois

Wall turbulence

- Refers to a broad class of turbulent flows bounded by a surface:
 - Atmospheric boundary layer
 - Boundary layer on ocean floor
 - Flows over aircraft, ships, submarines, etc.
 - Flows over turbine blades, blades of windmills, etc.
- These flows are extremely difficult to study both experimentally and computationally.
 - As such, the simplest (canonical) cases have received the vast majority of research attention despite most practical flows of interest occurring in the presence of significantly more complexity.
 - High Reynolds numbers (Re)
 - Other influences: Surface roughness, pressure gradients, curvature, freestream effects, multiple phases, buoyancy, etc.
- Coherent structures play a pivotal role in the evolution of such flows.

Boundary-layer wind tunnel

Inlet and flow conditioning

test section

- Low-speed suction wind tunnel
- Test section: 1m × 1m crosssection; 6m streamwise fetch
- Boundary-layer thickness:
 ~100 mm
- Free-stream velocities: $3 < U_{\infty} < 40 \text{ m/s}$
- Reynolds-number range: $1000 < \text{Re}_{\theta} < 15000$ $300 < \delta^+ < 5000$

Particle image velocimetry (PIV)

- Illumination: Pulsed laser (Nd:YAG)
- Imaging: Highly sensitive CCD cameras
- Tracer particles: sub-micron olive oil droplets
- **RESULT:** Velocity resolved *instantaneously* with high spatial resolution (10–20*y**) over planar domain comparable to the outer length scale in moderate
 Reynolds-number wall-bounded turbulence.

wind-tunnel test section

camera

Outer-layer structure of wall turbulence

Adrian, Meinhart and Tomkins (2000), JFM

Assessing the importance of underlying structure

- It is now well established that an underlying structural foundation exists in wall-bounded turbulent flows.
 - What role do these structures play in the turbulence statistics (single- as well as multi-point)?
 - What are the basic characteristics of this organization?
 - What role might this structural foundation play in turbulence modeling and control?
- Challenges
 - Structures must be effectively extracted from the background turbulence.
 - Galilean decomposition (visualization in the reference frame of structure)
 - Local vortex markers
 - Analysis methodologies must be devised to study their importance and impact on the overall flow.
 - Spatial correlations
 - Conditional averaging

Galilean decomposition of representative instantaneous PIV velocity field

Galilean decomposition reveals only those vortices traveling at the chosen advection velocity

Laboratory for Turbulence and Complex Flow University of Illinois at Urbana-Champaign

Vortex identification: Swirling strength (λ_{ci})

- Swirling strength (λ_{ci}) is the imaginary portion of the complex conjugate eigenvalues of the local velocity gradient tensor (Zhou *et al.*, 1999; Chakraborty *et al.*, 2005).
 - Unambiguous measure of rotation
 - Frame independent
 - Unlike vorticity, does not identify regions of intense shear
- For planar velocity data, one must employ a 2D version of the local velocity gradient tensor.
 - Will have either 2 real or a complex-conjugate pair of eigenvalues

Galilean decomposition of representative instantaneous PIV velocity field

Associated Λ_{ci} field

Local Galilean decomposition around Λ_{ci} events

Outer-layer structure of wall turbulence

Adrian, Meinhart and Tomkins (2000), JFM

R = 0.268 mm $\text{Re}_{\tau} = 167$ Micro-PIV result

Natrajan, Yamaguchi and Christensen (2007), Microfluidics and Nanofluidics **3**(1)

Macroscale turbulent channel flow

h = 25.0 mmRe_{τ} = 550 Lightsheet PIV result

Vortex population statistics Ш p(r)Retrograde Prograde 300 100 Re 75 200 Re $\Pi_{\rm p}$ ⊑ 50 100 25 i Ciari 00 0.25 0.5 0.5 0.75 0.250.75 y/δ y/δ ×10⁻³ ×10⁻² 0.5 2 0.4 1.5 $\Pi_p \, Re_\tau^{^{-1.17}}$ с. 1. Re-1. 0.2 0.5 0.1 $\Pi_{\rm p} \propto {\rm Re}_{\tau}^{1.17}$ $\Pi_{\rm r} \propto {\rm Re}_{\tau}^{1.5}$ 0 0 y / δ Wu and Christensen (2006), JFM $\frac{0.5}{y/\delta}$ 0.75 0.25 0.25 Ó) 0

Vortex advection velocities: TBL

Wu and Christensen (2006), JFM

Laboratory for Turbulence and Complex Flow University of Illinois at Urbana-Champaign

Histograms of advection velocities

Wu and Christensen (2006), JFM

Laboratory for Turbulence and Complex Flow University of Illinois at Urbana-Champaign

Outer-layer structure of wall turbulence

Adrian, Meinhart and Tomkins (2000), JFM

Contributions of LMR's to single-point statistics

• Define low-momentum threshold and identify gridpoints satisfying the threshold:

$$I(x_j, z_j; U_{th}) = \begin{cases} 1, \text{ when } u(x_j, z_j) \leq U_{th} \\ 0, \text{ otherwise,} \end{cases}$$

• Average quantity of interest, *S*, satisfying threshold:

$$\langle S \rangle (U_{th}) = \frac{1}{M \times P} \sum_{\text{all}x} \sum_{\text{all}z} \sum_{j=1}^{M} S(x_j, z_j) I(x_j, z_j; U_{th}),$$

$y = 0.065\delta (y^+=200)$

Threshold	$-\langle u'v'\rangle$	$\langle u'^2 \rangle$	$\langle \nu' \rangle^2$	$\langle w'^2 \rangle$	$\langle q^2 \rangle$	Space occupied
0.9 <i>U</i>	46%	43%	14%	29%	34%	21%
0.8U	18%	16%	4%	5%	12%	4%
0.7 <i>U</i>	1.3%	1.2%	0.3%	0.1%	0.8%	0.2%

'Super'-structures at $y = 0.065\delta$

Statistical imprints of structure

- Do hairpin vortices and their organization into larger-scale vortex packets leave their imprint upon the spatial statistics of wall turbulence?
 - Patterns must occur often.
 - Characteristics must not vary appreciably in order to survive the averaging process.
- Two-point spatial correlations
 - Streamwise velocity (ρ_{uu})
 - Swirling strength ($\rho_{\lambda\lambda}$)
- Conditional averaging based on dominant structural characteristics

hairpin heads

Inclination angle of ρ_{uu}

 $\rho_{\lambda\lambda}$ in *x*-*y* plane at *y*=0.15 δ

Consistent with streamwisealigned hairpin heads inclined slightly away from wall

 $\rho_{\lambda\lambda}$ in *x*–*z* plane at *y*=0.15 δ

Again consistent with streamwisealigned hairpin structures

Laboratory for Turbulence and Complex Flow University of Illinois at Urbana-Champaign

Conditional averaging to reveal characteristics and importance of embedded structure

Example: What is the most probable velocity field associated with a spanwise vortex core?

 $\left\langle u_{j}\left(\mathbf{x}'\right)\middle|\lambda_{ci}\left(\mathbf{x}\right)\right\rangle$

Linear stochastic estimate of this conditional average:

 $\left\langle u_{j}\left(\mathbf{x}'\right)\middle|\lambda_{ci}\left(\mathbf{x}\right)\right\rangle \approx L\lambda_{ci}\left(\mathbf{x}\right)$

Minimization of mean-square error yields

$$\left\langle u_{j}\left(\mathbf{x}'\right) \middle| \lambda_{ci}\left(\mathbf{x}\right) \right\rangle \approx \frac{\left\langle \lambda_{ci}\left(\mathbf{x}\right) u_{j}\left(\mathbf{x}'\right) \right\rangle}{\left\langle \lambda_{ci}\left(\mathbf{x}\right) \lambda_{ci}\left(\mathbf{x}\right) \right\rangle} \lambda_{ci}\left(\mathbf{x}\right)$$

Conditional average of the velocity field can therefore be estimated via unconditional two-point spatial correlations:

$$R_{\lambda u}(r_{x}, y) = \left\langle \lambda_{ci}(x, y_{ref}) u_{j}(x + r_{x}, y) \right\rangle$$

Christensen and Adrian (2001), JFM

Statistical imprint of outer-layer vortex organization

Christensen and Adrian (2001), JFM

Laboratory for Turbulence and Complex Flow University of Illinois at Urbana-Champaign

Another example: Large-eddy simulation (LES)

- **IDEA:** Only resolve a subset of the dynamically-important spatial scales in order to reduce the overall cost of the computation.
 - Larger scales are solved for directly while the smaller scales are modeled in some fashion.
 - One can run an LES at a much higher Re for the same cost as a lower-Re direct numerical simulation (DNS).
- Implementation
 - Equations of motion are low-pass filtered, yielding a set of "filtered" equations for the resolved scales.
- Difficulties
 - One must define a spatial-scale boundary between the resolved and unresolved scales as well as an appropriate filtering methodology.
 - The influence of the smaller (unresolved) scales on the evolution of the larger (resolved) scales must be modeled.
 - What role do hairpin vortex packets play in SGS physics?

LES governing equations

Filtered continuity and momentum

$$\frac{\partial \tilde{u}_i}{\partial x_i} = 0$$

$$\frac{\partial \tilde{u}_i}{\partial t} + \frac{\partial \tilde{u}_i \tilde{u}_j}{\partial x_j} = -\frac{1}{\rho} \frac{\partial \tilde{p}}{\partial x_i} + v \frac{\partial^2 \tilde{u}_i}{\partial x_j \partial x_j} - \frac{\partial \tau_{ij}}{\partial x_j}$$

$$\tau_{ij} = u_i u_j - \tilde{u}_i \tilde{u}_j$$

Subgrid-scale (SGS) stresses

Filtered kinetic energy

$$\frac{\partial \tilde{q}^2 / 2}{\partial t} + \tilde{u}_j \frac{\partial \tilde{q}^2 / 2}{\partial x_j} = -\frac{1}{\rho} \frac{\partial \tilde{u}_j \tilde{p}}{\partial x_j} - \frac{\partial \tilde{u}_i \tau_{ij}}{\partial x_j} + v \frac{\partial^2 \tilde{q}^2 / 2}{\partial x_j \partial x_j} - v \frac{\partial \tilde{u}_i}{\partial x_j} \frac{\partial \tilde{u}_i}{\partial x_j} - \varepsilon_{\text{sgs}}$$
$$\varepsilon_{\text{sgs}} = -\tau_{ij} \tilde{S}_{ij}$$

SGS dissipation

 ε_{sgs} : Represents the energy transfer across the boundary between the resolved and unresolved scales.

Laboratory for Turbulence and Complex Flow University of Illinois at Urbana-Champaign

Qualitative description of SGS energy transfer

Representative turbulent energy spectrum

 ε_{sgs} >0: Energy transfer from the resolved to the unresolved scales \Rightarrow Forward scatter

 ε_{sgs} <0: Energy transfer from the unresolved to the resolved scales \Rightarrow Backward scatter

Instantaneous forward scatter

Instantaneous backscatter

Natrajan and Christensen (2006), Phys. Fluids 18(6)

Statistical analysis

Best estimate of the average forward scatter (or backscatter) fields induced by a hairpin vortex and a vortex packet is $\langle \Phi(\mathbf{x}') | \lambda_{ci}(\mathbf{x}) \rangle$.

Linear stochastic estimate of the conditionally averaged dissipation field given a vortex core:

 $\left\langle \Phi\left(\mathbf{x}'\right) \middle| \lambda_{ci}\left(\mathbf{x}\right) \right\rangle \approx L\lambda_{ci}\left(\mathbf{x}\right)$

Minimization of mean-square error yields

$$\langle \Phi(\mathbf{x}') | \lambda_{ci}(\mathbf{x}) \rangle \approx \frac{\langle \lambda_{ci}(\mathbf{x}) \Phi(\mathbf{x}') \rangle}{\langle \lambda_{ci}(\mathbf{x}) \lambda_{ci}(\mathbf{x}) \rangle} \lambda_{ci}(\mathbf{x})$$

Conditional average of the forward scatter and backscatter fields can therefore be estimated via unconditional two-point spatial correlations

$$R_{\lambda\Phi}(r_x, y) = \left\langle \lambda_{ci}(x, y_{ref}) \Phi(x + r_x, y) \right\rangle$$

Forward scatter given a hairpin head

Natrajan and Christensen (2006), Phys. Fluids 18(6)

Backscatter given hairpin head

Natrajan and Christensen (2006), Phys. Fluids 18(6)

Contributions to forward and backward scatter

Natrajan and Christensen (2006), Phys. Fluids 18(6)

Most probable velocity field given a forward scatter event

Natrajan and Christensen (2006), Phys. Fluids 18(6)

Most probable velocity field given a backward scatter event

Natrajan and Christensen (2006), Phys. Fluids 18(6)

Instantaneous backscatter revisited

Laboratory for Turbulence and Complex Flow University of Illinois at Urbana-Champaign

Conceptual model of structural contributions to SGS dissipation

- Forward scatter around a hairpin head is coincident with the ejection induced by the vortex due to $-\tau_{12}\tilde{S}_{12}$. The most intense forward scatter is observed via additional contributions from $-\tau_{11}\tilde{S}_{11}$ when this ejection is countered by a sweep event which collectively generate an inclined shear layer.
- In addition to the localized backscatter observed upstream/above and downstream/below each hairpin head, the most intense backscatter is observed at the trailing end of a hairpin vortex packet, particularly when a second packet is observed upstream. $-\tau_{11}\tilde{S}_{11}$ is the dominant contributor to backscatter events.

Natrajan and Christensen (2006), Phys. Fluids 18(6)

Summary

- Whatever the experimental/computational protocol employed, identification of coherent structures in data is pivotal to understanding the evolution of turbulent flows.
- Robust identification methodology must be applied
 - "Quality" of data can impact choice
- Once structures are identified, key challenge lies in extracting their influence and importance.
 - Success tightly coupled to clarity of goals
 - Conditional averaging methods can be extremely helpful in this regard
 - Key is choosing appropriate averaging conditions