Measurements of Turbulence Profiles with Scanning Doppler Lidar for Wind Energy Applications

Rod Frehlich

University of Colorado, Boulder, CO RAL/NCAR, Boulder, CO

Acknowledgments

- CTI (Steve Hannon, Sammy Henderson, Jerry Pelk, Mark Vercauteren, Keith Barr)
- Larry Cornman, Kent Goodrich (Juneau)
- DARPA Pentagon Shield (Paul Benda)
 - R. Sharman, T. Warner, J. Weil, S. Swerdlin (NCAR)
 - Y. Meillier, M. Jensen, B. Balsley (CU)
- Army Research Office (Walter Bach)
- NSF (Steve Nelson)
- NREL (Neil Kelley, Bonnie Jonkman)
- CU renewable energy seed grant
- NOAA (Bob Banta, Yelena Pichugina)

Complements of Steve Hannon

T'S EYE SAFE!

Beam Is Scanned to Provide 2-3D Spatial Coverage

2 μm wavelength system: 60 m (400 nsec) Pulse transmitted @ 500Hz

1.6 μm wavelength system
 ~40 m (270 nsec) Pulse
 transmitted @750Hz

Portion of Scattered Light Collected By Telescope 'Pencil' Beam Width 10-30 cm

> Relative Wind Induces a Doppler Frequency Shift in the Backscattered Light; This Frequency Shift Is Detected by the Sensor

Return Light is Doppler

Shifted by Moving Aerosols

- Doppler Lidar = Infrared Doppler Radar
- Infrared: Instead of Raindrops, Lidar Uses Natural Particulates
- Doppler: Velocity/Wind Sensing (Strength)
- Radar: Accurate Position Information

WindTracer

Point Statistics of Turbulence

- Longitudinal velocity (radial)
- Transverse velocity
- Longitudinal structure function

 $D_{LL}(s) = \langle [v_L(r_2) - v_L(r_1)]^2 \rangle$

Transverse
 structure function

 $D_{NN}(s) = \langle [v_N(r_2) - v_N(r_1)]^2 \rangle$

Horizontal Isotropic Turbulence

Universal description - longitudinal

 $D_{LL}(s) = 2 \sigma_u^2 \Lambda(s/L_{0u})$

- σ_u longitudinal standard deviation
- L_{0u} longitudinal outer scale
- Λ(x) universal function (von Kármán)
- s<< L_{0u}
 - $D_{LL}(s) = C_{K} \epsilon_{u}^{2/3} s^{2/3} C_{K} \sim 2.0$
- ε_u = energy dissipation rate

Horizontal Isotropic Turbulence

Universal description - transverse

 $\mathsf{D}_{\mathsf{NN}}(\mathsf{s}) = 2 \; \sigma_{\mathsf{v}}^2 \Lambda(\mathsf{s}/\mathsf{L}_{\mathsf{0}\mathsf{v}})$

- σ_v transverse standard deviation
- L_{0v} transverse outer scale
- Λ(x) universal function (von Karman)
- s<< L_{0v}
 - $D_{NN}(s) = C_J \epsilon_v^{2/3} s^{2/3}$ $C_J \sim 2.67$
- ε_v = energy dissipation rate

Doppler LIDAR Range Weighting

- Time of data maps to range (1 µs = 150 m)
- Pulsed lidar velocity measurements filter the random radial velocity v_r(z)
- Pulse width Δr
- Range gate length defined by processing interval Δp
- Range weighting W(r)

LIDAR Data and Range Weighting

- LIDAR radial velocity estimates at range R v(R) = v_{wgt} (R) + e(R)
- v_{wgt}(R) pulse weighted velocity
- e(R) estimation error

 $v_{wgt}(R) = \int v_r(z)W(R-z) dz$

- v_r(z) random radial velocity
- W(r) range weighting

Estimates of Random Error

- Radial velocity error variance σ_e² can be determined from data
- Spectral noise floor is proportional to σ_e^2

Non-Scanning Lidar Data

- Vertically pointed beam
- Time series of velocity for various altitudes z
- High spatial and temporal resolution
- Resolves turbulence

Lidar Structure Function (Radial)

Corrected longitudinal structure function

$$D_{wgt}(s) = D_{raw}(s) - 2 \sigma_e^2(s)$$

- D_{raw}(s) raw structure function
- $\sigma_e^2(s)$ correction for estimation error
- Theoretical relation ($\Delta h << \Delta p$) D_(s) = 2 σ_{12}^{2} G(s. L₀, Δp , Δr)

• Best-fit to data produces estimates of $\sigma_{\rm u}, L_{\rm 0u}, \varepsilon_{\rm u}$

Turbulence Statistics

- Calculate corrected
 structure function
- Determine best-fit to theoretical model
- Best-fit parameters are estimates of turbulence statistics

Scanning Lidar Data

- High-resolution profiles of wind speed and turbulence statistics
- Highest statistical accuracy
- Rapid update rates compared with tower derived statistics
- Can provide profiles at multiple locations
- Ideal for some wind energy applications

LIDAR Velocity Map for 1°

- Radial velocity
- 100 range-gates along beam
- 180 beams
 (Δφ=0.5 degree)
- 18 seconds per scan
- Δh=R Δφ << Δp for R<2km

Wind Speed and Direction

- Best-fit lidar radial velocity for best-fit wind speed and direction
- Fluctuations are turbulence
- Longitudinal fluctuations along the lidar beam
- Transverse fluctuation in azimuth direction

Lidar Structure Function (Azimuth)

Corrected azimuth structure function

$$D_{wgt}(s) = D_{raw}(s) - 2 \sigma_e^2(s)$$

- D_{raw}(s) raw structure function
- $\sigma_e^2(s)$ correction for estimation error
- Theoretical relation ($\Delta h << \Delta p$)

 $D_{wgt}(s) = 2 \sigma_v^2 G_{\phi}(s, L_{0v}, \Delta p, \Delta r)$

- Best-fit to data produces estimates of $\sigma_{\rm v}, {\rm L}_{\rm 0v}, \varepsilon_{\rm v}$

Turbulence Estimates Zero Elevation

- Structure function of radial velocity in range a)
- Best fit produces estimates of σ_u, ε_u, L_{0u}
- Structure function in azimuth b)
- Best fit produces estimates of $\sigma_v, \epsilon_v, L_{0v}$

Turbulence Estimates H=80 m

- Best fit for noise corrected structure function (o)
- Raw structure functions (+)
- Radial velocity a) has small elevation angles (<= 4°)
- Structure function in azimuth b)
- Good agreement in ϵ_u and ϵ_v (isotropy)

CIRES Tethered Lifting System (TLS): Hi-Tech Kites or Aerodynamic Blimps

High Resolution Profiles from TLS Data

- TLS instrumentation used as "truth" for turbulence profiles
- Hot-wire sensor for small scale velocity
- Cold-wire sensor for small scale temperature

Velocity Turbulence

- Along-stream velocity u(t)
- Spectrum S_u(f)
- Taylors frozen hypothesis
- Energy dissipation rate ε

Temperature Turbulence

- Along-stream temperature T(t)
- Spectrum S_T(f)
- Taylors frozen hypothesis
- Temperature structure constant C_T²

LIDAR, SODAR and TLS (Blimp)

Lidar and TLS Profiles

Wind Energy Applications

- Towers are expensive and limited in height coverage
- CW Doppler lidar can measure winds near an individual turbine
- Scanning Doppler lidar can monitor large area upstream of a wind farm
- Autonomous lidar (CTI)
 - Airports
 - Homeland security DC

Doppler Lidar at NREL

- Radial velocity map
- Large eddies
- Large velocity variations
- Multiple elevation angles provide 3D sampling

High Turbulence

- Large fluctuations about the best fit wind speed
- 3D average required for accurate statistics

Azimuth Structure Functions

- Best-fit model provides robust turbulence statistics
- Profiles produced from 3D volume scan by processing data in altitude bins

H= 50.35 m WS=10.4302 m/s dir=290.82° index=3 ϵ =0.97485E-01 m²/s³ L₀=91.39 m σ =2.121 m/s

Atmospheric Profiles

- Accurate profiles produced
- Most complete description of wind and turbulence available
- Ideal for site resource assessment

Large Turbulent Length Scale

- Difficult to separate turbulence and larger scale processes
- Similar to troposphere and Boreas Data
- Violates Cartesian approximation of analysis
- What is optimal methodology?

H= 192.00 m WS=12.8012 m/s dir=289.01° index=10 ϵ =0.48701E-01 m²/s³ L₀=870.68 m σ =3.568 m/s

Small Turbulent Length Scale

- Large corrections for spatial filtering
- Requires shorter lidar pulse and more accurate corrections
- Critical for lower altitudes

H= 30.24 m WS=4.6027 m/s dir=196.41° index=2 ϵ =0.40670E-02 m²/s³ L₀=36.61 m σ =0.542 m/s 10⁰ [-----Structure Function (m²/s²) 10⁻¹ Lidar best fit model von Karman model 10^{-2} 10¹ 10^{2} 10^{3}

Separation s (m)

Profiles from Two Angular Sectors

- Differences in wind speed and direction
- Turbulence profiles similar
- Implications for site resource assessment

Rapid Evolution in 7 Minutes

- Rapid change in wind speed
- Turbulence levels are not reduced with lower winds
- 3D scanning required for short time averages

Directional Shear

Date 20070310

Start Time UTC 6.621 End Time UTC 6.744

- Large shear in wind direction
- Typically at night with light winds
- More data • required for wind energy applications

Future Work

- Optimize Lidar design, signal processing, and scanning patterns
- Determine universal description of turbulence for better turbulence estimates (anisotropy?)
- Extend spatial filter correction to two dimensions for faster scanning and larger maximum range
- Improve algorithms for large length scale L₀ (relax Cartesian approximation)
- More data required, especially for wind energy research

Lafayette Campaign

LIDAR and TLS (Blimp)

Low Turbulence Data

- Accurate corrections for pulse filtering required
- Correct turbulence model for spatial statistics

Low Turbulence Conditions

Convection

Coherent Doppler Lidar Properties

- Direct measurement of Doppler shift from aerosol particles
- Doppler shift 1 MHz for 1 m/s (2 μm)
- Accurate radial velocity estimates with little bias
- Most sensitive detection method
- Immune to background light
- Eye safe operation

Atmospheric LIDAR Data

- Lidar signal is a narrow band Gaussian random process
- Simple statistical description for constant velocity and aerosol backscatter

Atmospheric LIDAR Data

- Lidar signal
- Random velocity
- Pulse weighting
- Range gate defined by processing interval

Estimation of Velocity

- Data from multiple pulses
 N improves performance
- Spectral based estimators
- Maximum Likelihood has best performance

Multiple Pulse Estimates

- Single pulse data has random outliers
- Pulse accumulation removes outliers
- Temporal resolution reduced

Estimates of Random Error-cont.

- Multiple pulse data has a smaller region for the noise floor
- The atmospheric signal must have low frequency content

Hard Target Data

- Velocity bias determined from hard target data
- Bias is typically less than 2 cm/s

2μm Lidar Data from Coherent Technologies, Inc.

Verification of Accuracy

- Velocity random error depends on signal energy
- Accuracy is very good
- Agrees with theoretical predictions if turbulence is included

