

Remote sensing for wind energy at Risø DTU

Jakob Mann

Wind Energy Department Risø DTU, National Laboratory for Sustainable Energy

Thanks to Risø Colleagues: *Mike Courtney, Torben Mikkelsen, Petter Lindelöw, Mikael Sjöholm, Karen Enevoldsen, Rozenn Wagner, Ferhat Bingöl, Alfredo Peña and more*

DTU E Outline

- A very short history of remote sensing at Risø
- What kind of lidars do VEA-Risø own?
- Performance of lidar for wind power resources and power curves
- Other current uses of wind lidars at Risø
- The future: The Windscanner project
- Conclusions and questions

A very short history of wind remote sensing at Risø

RISO

- Why remote sensing?
- SODAR, SAR, kites, remotely controled aircrafts
- Early lidars bulky, expensive and not too stable
- 2003: QinetiQ ZephIR lidar. Compact, affordable (?), relatively robust prototype
- 2004? WISE experiment at Høvsøre
- 2006: QQ series production.
- 2006: Leosphere Wind Cube pulsed lidar
- 2007 January: IEA Topical Expert meeting at Risø: State of the sodars, lidars, satellites.
- Dec 2007 Musketters Experiment (3 crossing lidars)
- April 2008 Delivery of first modified windscanner ZephiR
- June 2008 RS Summer School and ISARS2008 at Risø

VEA lidars: The QinetiQ ZephIR

- cw, homodyne lidar based on telecom components and a fiber laser from Koheras
- Range determined by focus
- Wind vector determined by conical scanning, assuming horizontal homogeneity

DTU EXA lidars: The Leosphere WindCube

- pulsed, heterodyne lidar based on telecom components and a fiber laser
- Range determined by time of travel
- Wind vector determined by scanning in four directions, assuming horizontal homogeneity

DTU RISO Performance tests at Høvsøre in western Denmark

RISØ

Testing of LIDARS at Risø's wind facililties in Høvsøre

Høvsøre test facility

- 13 Zephirs and Windcubes tested
- **19** months of comparison with cup anemometers at altitudes 40-116 m (160 m)
- Site equipped to screen on clouds, rain, temperature and perturbed wind directions

Results

- Typical gain: < ± 2%, observed [+2 to -5%]
- Typical altitude error: 0 5 m
- Typical standard deviation in 10 minute average: 25 cm/s

Simultaneous estimation of altitude errors

QinetiQ ZephIR 40 m from base of 116 m met tower

DTU E Four Leosphere WindCubes on test at Høvsøre

Weighting functions for the Windcube and the Zephir

RISØ

 Ξ

TimeStamp=20061206 0130 Focus Distance=151m

Cloud correction "deconvolutes" the spatial filtering

RISO WindCube error small - interferes with crucial part of pow. c.

DTU Performance in complex terrain

Lavrio

Panahaiko

Other current uses of wind lidars at Risø

- Simulations show that use of wind profile reduces the error in power curve measurement. So far, this has proven difficult in practice.
- Investigations of wakes behind wind turbines
- Flow over and around forests

Experimental Setup for wake experiment

DTU

RISØ

Experiment: 57 m mast and lidar measurements to 175 m

DTU

=

Upwind and downwind variances

 Ξ

The measured radial velocity is (assuming half opening angle = 30 deg)

$$v_r = \left| \frac{1}{2} u \cos \theta + \frac{1}{2} v \sin \theta + \frac{\sqrt{3}}{2} w \right|,$$

The upwind and downwind variances are therefore

$$\sigma^{2}(v_{r,up}) = \frac{1}{4}\sigma_{u}^{2} + \frac{3}{4}\sigma_{w}^{2} - \frac{\sqrt{3}}{2}\left\langle u'w'\right\rangle$$
$$\sigma^{2}(v_{r,down}) = \frac{1}{4}\sigma_{u}^{2} + \frac{3}{4}\sigma_{w}^{2} + \frac{\sqrt{3}}{2}\left\langle u'w'\right\rangle$$

Profiles of wind speed, direction and momentum flux

Comparison with forest CFD model by Sogashev and Panferov (BLM, 2006) Winter conditions Summer conditions

The future: The Windscanner project

Our vision is to construct a ground based facility for the remote measurement of the threedimensional atmospheric velocity field in a volume engulfing the huge wind turbines of tomorrow. It will be able to measure the wind vector at several hundred points within that volume every second. We believe that such a tool will make a major contribution to the technological development and penetration of wind energy combined with a leap in the scientific understanding of turbulent atmospheric flow.

Initial 3D staring: The musketeer Experiment

DTU

Ξ

sonic $\alpha = 56^{\circ}$ WC1 WC2 WC3

Time [s]

DTU Spectral attenuation

• Now the filtered velocity spectrum of the component in the direction of the laser beam is

$$F_{v}(k_{1}) = \frac{1}{2\pi} \int \langle v(\boldsymbol{x})v(\boldsymbol{x} + x_{1}\boldsymbol{e}_{1})\rangle e^{-ik_{1}x_{1}} dx_{1}$$

$$= n_{i}n_{j} \int \int \varphi(s)\varphi(s') \int \int \Phi_{ij}(\boldsymbol{k}) \exp\left(i\boldsymbol{k} \cdot \boldsymbol{n}(s'-s)\right) dk_{2}dk_{3}dsds'$$

$$= n_{i}n_{j} \int \int |\varphi(\boldsymbol{k} \cdot \boldsymbol{n})|^{2} \Phi_{ij}(\boldsymbol{k}) dk_{2}dk_{3} .$$

• The lidar wind speed is

$$v(\mathbf{x}) = \int_{-\infty}^{\infty} \varphi(s) \mathbf{n} \cdot \mathbf{u}(s\mathbf{n} + \mathbf{x}) ds$$

 DTU

 RISO

 Comparison between staring ZephIR and sonic (10 min ave)

Spectra of fast Zephir and sonic component speeds

DTU

- Two wind lidars (so far) have entered the wind energy market:
 - 1. Leosphere's WindCube: A pulsed and focused system
 - 2. QinetiQ's (now Natural Power) ZephIR: A cw focused system
- Their performances are very good, but still some problems, e.g. "fat tails" of the ZephIR sensitivity function
- They are used to study various subjects in wind energy research
 - 1. Wakes behind turbines
 - 2. Improvement of power curve measurements
 - 3. Micro-meteorological experiments
- Our ambition for the future is to construct a 3D scanning lidar system

Thank you for your attention