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Upper troposphere-lower stratosphere
turbulence: aviation perspective

Commercial aircraft and business jets spend most of their time in
cruise (~7 — 13 km)
~75% of all NTSB weather-related aviation accidents

Therefore there is a real need for aviation turbulence
nowcasts/forecasts

But 3 major obstacles:
— Routine observations are lacking

— Fundamental understanding of turbulence processes in the
UTLS is lacking

— Operational NWP models have grid sizes much larger than
scales that affect aircraft (eddies ~ 100m — several km >> inertial
range (homogeneous isotropic))
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Fundamental questions for UTLS turbulence

What are the sources?
— Large-scale forcing mechanisms
— Turbulence genesis mechanisms
* Any large-scale process that would allow KHI
« Gravity wave “breakdown”
 What is the climatology?
— Frequency
— Spatial statistics
« How is it different from BL, esp. SBL turbulence?
* |Is troposphere different than stratosphere?
 What is the degree of anisotropy?
« What are the length scales; are they the same as in the BL?

« What is the relation between velocity and thermal turbulence (¢
vs C;2)?
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Sources — pilot’'s perspective

Figure 1-16. Aviation turbulence classifications. This figure is a pictorial summary of
the turbulence-producing phenomena that may occur in each turbulence classification.

Source: P. Lester, “Turbulence — A new perspective for
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Relation to upper-level fronts
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Relation to inertia-gravity waves
generated by upper-level fronts

« NOAA G-IV encountered patches of moderate turbulence over
Pacific Ocean 17-18 Feb 2001 at ~10-11 km

« Observations and simulations showed this was related to breaking
IGWSs propagating through the strong shear above the jet, perturbing
both the wind shear and stability — to reduce Ri <1
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Gravity waves perturb background Ri

« Example: Trapped lee wave with linear shear,
N=const., (Ri=N?/U_2=const=8), Nh,/U,=.5
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Relation to MWT

 Severe turbulence encounter
15 Mar 2006 lee of Rockies,

N. Colorado, 227, 11.9 km, 1
injury, flight diverted

vertical accel.

FDR trace L4p
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Simulation of event

 Multi-nested Clark-Hall model, inner nest resolution 1 km
« Wave-induced critical level (U+u'=0)
* Not resolvable by NWP model
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Another source: convectively-
generated gravity waves

ERFA MODIS - 11,0 IR - 04:30 UTC 25 HMAY 2000 - 1,0 KM - CIMSS

=90 =80 =7 -G 5O —40 =30 —20

- : : : Simulation of convectively induced gravity waves above
MODIS image of convectively-induced gravity waves. . .
Courtesy Wayne Feltz UW CIMSS tropical convection. Courtesy Todd Lane U. Melbourne
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2D simulation® of wave propagation and
breaking sequence (Lane et al. JAS 2003)

Potential temperature - 2 K intervals

*Clark-Hall cloud model (Clark 1977,1979)



Strongest Upper-Level Winds
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Relation to anvils
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: Peak EDR = 0.25-0.45 (Moderate Turbulence)
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UTLS turbulence climatologies

— frequency
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UTLS turbulence climatologies —
marked seasonal dependence

« Using ~ 1M turbulence PIREPs

from 1994-2007 over CONUS
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Altitude (km)

UTLS turbulence climatologies
— vertical distribution

PIREP counts over CONUS
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Figure 6. Seasonal-vertical variations of the mean kinetic energy dissipation rate e calculated from
routine meteorological observations (twice a day) at the Shionomisaki Weather Station of the Japan

Meteorological Agency.

Fukao et al., JGR, 1994
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UTLS turbulence climatologies
- relation to clouds

PIREP counts over CONUS
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UTLS turbulence climatologies
— relation to MWT

MOG/Total PIREPs > 20,000 ft % MWT MOG/Total PIREPs > 20,000 ft

1994 — 2005 1994 — 2005
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UTLS turbulence climatologies
— dimensions of CAT zones

Based on limited observations
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UTLS observations - intermittency

« Comparison to aircraft measured

edrs_show substantial edr variability
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Observed atmospheric spectra — GASP
and MOZAIC data

« k™3 behavior from ~3-4 km to ~400 km in mid to upper
troposphere and lower stratosphere
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Observed atmospheric spectra — research
aircraft data

« Almost every flight examined o 10°
shows

— k%3 behavior from 10s m to ~10s 10k
km in mid to upper troposphere “a e
and lower stratosphere Tt S
— No rollover except perhaps for w >
(i.e. not von Karman-like) 10°f
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UTLS turbulence climatology summary

Occurrence of elevated turbulence very rare based on PIREPs, in
situ data

— But since based on encounters and pilots try to avoid this is
probably biased low

— Background <¢> ~ 7-8 x 10-° from Lindborg model (Frehlich,
JTEC 2001)

Highly intermittent
Marked seasonal dependence
Mostly in clear air above about 6 km
— Usually stably-stratified with shear
— Some correlation with breaking gravity waves or IGWs

« Wave perturbations drive already low background Ri to
unstable values

« Gravity wave-critical level interactions
— Patchy, “pancake” structure: similar to observations of SBL

Background spatial statistics show robust k-3 or s*2/3 behavior from
10s m to ~400-500 km

No outer scale!! i
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Nowcasts/forecasts of aircraft scale turbulence

Approach

« Use (relatively) large scale NWP model
output (~10 km horizontal resolution) to
predict likelihood of aircraft scale
turbulence

« Since NWP model scales >> aircraft
scales must understand linkage of large
scales (model resolved) to small scales
(unresolved)

— Assume energy sources are
associated with large scale (resolved)
features:

« Jet streams
» Upper-level fronts
» Tropopause
» Strongly ageostrophic flows Example prediction based on 13 km RUC

— A_ssume downscale cascade to
aircraft scales
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Development of edr diagnostic

Eddy dissipation rate (Frehlich and

Sharman, MWR, 2004)

— Assumes UTLS turbulence
follows GASP/Lindborg scaling

— Derive edr from 2" order

structure function computed from 2
NWP resolved model output

fields

— Account for NWP model specific deficit

smoothing and filtering
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Edr calibration: comparison to pireps

RUC13-20 2006 03 16 00 UTC altitude 12.0 km
5x5 (100x100km averaging domain
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Spectra over mountains

Examined spectra from Kk-5/3
HIAPER TREX ferry legs

over Colorado Rockies < 102 3
Two regions: "E107E 3
(1) Classical inertial range  Z104E 3
turbulence 60m-2 km D o7 k.
(k-5/3) < 10'F '
(2) Gravity wave E
enhancement > 2 km =
(also k=R) @

Observed in 22/24 ferry
flights

Also observed in

— original GASP data
(Jasperson et al., JAS
1990)

- Enhanced east-west edr «» 10—3 | Ll ijian Ll i [ R L1 i --I"I [T
levels from RUC and 10° 10 0.001 0.010 0.100 1.000
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other NWP models (1/m)

Flight 3 3/10/2006 n
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Implications

Suggests k=3 or s*273 behavior is due to a superposition of

gravity waves and a downscale cascade resembling 3D
isotropic turbulence

— Consistent with speculations of Dewan (1979,1997),
VanZandt (1982), others

— Successful in oceans (Garret-Munk spectrum)

— i.e., a history of gravity waves produces k> spectra

— But does not identify the specific cascade mechanism
Then:

— The problem of forecasting turbulence is really one of
forecasting gravity waves and gravity wave “breaking”

— Higher resolution NWP models (~10 km or less) start to
resolve part of the spectra

— Models such as the edr diagnostic account for the
downscale cascade (and also model smoothing effects) and

have been particularly successful in predicting turbulence
over mountains terrain
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MSL ALT (ft)

Future — In situ measurements

— Need to include other types of aircraft/airlines to get

more coverage vertically and horizontally

— Need other simultaneous measurements to help
identify source

« Humidity or liquid water content
« Waves”?
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Future —dedicated field program?

Nothing since late 1970’s

|deally should involve an aircraft (perhaps a UAV?) with high-rate
measurements and a forward-looking scanning Doppler lidar +
radiometer to get Ri in the vicinity of the aircraft — allows
intercomparisons of ¢

— Need to establish accuracy requirements for stability and shear
Upward-looking radar would also be useful to test € — C? relations
— Tradeoff studies of range, resolution

Upward-looking lidar probably has inadequate range

Use GTG forecasts and ground-based radar to identify conducive
areas/times

Ri, €, C\? Research ac

Clear-air radar i

NCAR




	Observations and simulations of turbulent processes in the upper troposphere and lower stratosphere
	Upper troposphere-lower stratosphere turbulence: aviation perspective
	Fundamental questions for UTLS turbulence
	Sources – pilot’s perspective
	Relation to upper-level fronts
	Relation to inertia-gravity waves generated by upper-level fronts
	Gravity waves perturb background Ri
	Relation to MWT  �
	Simulation of event
	Another source: convectively-generated gravity waves
	2D simulation* of wave propagation and breaking sequence (Lane et al. JAS 2003)
	Relation to anvils
	UTLS turbulence climatologies – frequency
	UTLS turbulence climatologies – marked seasonal dependence
	UTLS turbulence climatologies – vertical distribution
	UTLS turbulence climatologies - relation to clouds
	UTLS turbulence climatologies – relation to MWT
	UTLS turbulence climatologies – dimensions of CAT zones
	UTLS observations - intermittency
	Observed atmospheric spectra – GASP and MOZAIC data
	Observed atmospheric spectra – research aircraft data
	UTLS turbulence climatology summary
	Nowcasts/forecasts of aircraft scale turbulence
	Development of edr diagnostic
	Edr calibration: comparison to pireps
	Spectra over mountains
	Implications
	Future – in situ measurements
	Future –dedicated field program?

