$M_{A J d A}-\frac{S_{A M} \rightarrow \text { StechamanN Mewton }}{N C A R-\text { tec lures }} \geqslant 15108$
Problem\#I Multi-Scale Equations
from Lecture \#2 - Low Froude\# - WTG
A) Assumning Rigid lid and no-s lip brly cowditions,

Solve the Lange Scale Eqns

$$
\begin{aligned}
\left(\vec{u}_{h}\right)_{t} & =-\nabla_{\Delta} \mu+F_{\vec{u}} \\
p_{z} & =\theta
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial \theta}{\partial t}+w=F_{\theta} \\
& \operatorname{div} \vec{u}_{n}+w_{3}=0
\end{aligned}
$$

Hiwt: Use vertrid ex exinfantava; What ar graito/ /oortual modes?
B) Assume the small scale flucturitevis are

21/2 dimenscini, i.e. $\vec{u}_{h}^{\prime}=\left(u^{\prime}(x, t), w^{\prime \prime}(x, t)\right)$
wand set-up and solve the wall scale mean flow equationi from decture \#2

Ma jd Lectures - Yulong Wing mentor
Problem \#2 (Lector e\#3 WTG and $F_{R}=O(7)$)
A) Repeat derivation and equations from Lecture *3 with general inelastic $p_{0}(z), N^{2}(g)$
B) Classify all Large Scale Flow Solus at Leading O_{n} der with $\Theta \equiv 0$ and get Equs
Hint: 1) Generalized Shear Flows $\left(\vec{X}_{h}=\left(I_{n}, I_{h}\right)\right.$

$$
\overrightarrow{U_{h}}=\left(U(z), V\left(j, X_{h}, t\right)\right)
$$

2) Barotropic Flows without g dependence

Problem \#3 (SAm Stechmann/Yulowg Ding mentors) Compare $3-D$ fully WTG $~+~ F R=O(7)$ from
with prescribed $V(g)$ and $3-D$ small-scale
plane ware solutions with special solutions from Problem \# A) in Low Froude t, WTG Regime.
Euture: Numersics for 3-D AS ymptatic equal, with vanibl

