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Original Hydrostatic Balance

ρ = ρo + ρ̃(x, t), |ρ̃| � ρo

T = To + T̃ (x, t)

p = po(z) + p̃(x, t), ∇po(z) = ρog

Additional Hydrostatic Balance

ρ̃(x, t) = ρ1(z) + ρ′(x, t) = −bz + ρ′(x, t)

ρ = ρo + ρ1(z) + ρ′(x, t) = ρo − bz + ρ′(x, t), |ρ′| � ρo

p̃(x, t) = p1(z) + p′(x, t), − 1

ρo
∇p1(z) =

bz

ρo
g

g = −gẑ
p = po(z) + p1(z) + p′

To add the additional layer of hydrostatic balance, similarly apply this new
equation for ρ as done on page 13 of the lecture notes.

Thermal Energy

δρ

ρ
≈ −αδT |ρ̃| � ρo and |ρ′| � ρo

ρ− ρo
ρo + ρ1 + ρ′

≈ ρ1 + ρ′

ρo

T − To = −ρ1 + ρ′

αρo

ρcp
DT

Dt
= k∇2T

− (ρo �����
+ρ1 + ρ′)cp

�
�
�1

αρo

D

Dt
(��ρo + ρ1 + ρ′) = −k

�
�
�1

αρo
∇2(��ρ1 + ρ′)

Dρ1

Dt
= −b(u · ẑ)

Dρ′

Dt
− b(u · ẑ) =

k

ρocp
∇2ρ′
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Mass

∂ρ

∂t
+ ρ∇ · u+ u · ∇ρ = 0

∂

∂t
(����ρo + ρ1 + ρ′) + (ρo + ρ1 + ρ′)∇ · u+ u · ∇(��ρo + ρ1 + ρ′) = 0

Dominant Balance: ∇ · u = 0,

Momentum

ρ
Du

Dt
= −∇p+ ρg +∇ ·

[
2µS − 2

3
µ∇ · uI

]
(ρo + ρ1 + ρ′)

Du

Dt
= −∇(po + p1 + p′) + (ρo + ρ1 + ρ′)g + µ∇2u

Subtract the two hydrostatic balances: −∇po(z) + ρog = 0 and−∇p1 − ρ1g = 0

Divide by ρo + ρ1 : (1 +
�

�
�

��ρ′

ρo + ρ1

)
Du

Dt
=

1

ρo + ��ρ1

[
−∇p′ + ρ′g + µ∇2u

]
Du

Dt
= − 1

ρo
∇p′ + ρ′

ρo
g + ν∇2u

Move the Momentum Equation to the Rotating Frame

Ω = Ωẑ(∂uI
∂t

)
I

=
(∂uR
∂t

)
R

+ Ω× uR +
�

�
�∂Ω

∂t
× r + Ω×

(∂r
∂t

)
I(∂r

∂t

)
I

=
(∂r
∂t

)
R

+ Ω× r = uR + Ω× r(∂uI
∂t

)
I

=
(∂uR
∂t

)
R

+ Ω× uR + Ω× (uR + Ω× r)

Ω× (Ω× r) ≈ 0

Du

Dt
+ 2Ωẑ × u = − 1

ρo
∇p′ + ρ′

ρo
g + ν∇2u

Write in Terms of Θ and N

ρ′ =
(bρo
g

) 1
2
Θ

N =
(bg
ρo

) 1
2
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Thermal Energy

(bρo
g

) 1
2 DΘ

Dt
− b(u · ẑ) =

(bρo
g

) 1
2 k

ρocp
∇2Θ

Multiply by

(
bρo
g

)− 1
2

DΘ

Dt
−
(
bg

ρo

) 1
2

(u · ẑ) =
k

ρocp
∇2Θ

DΘ

Dt
−N(u · ẑ) =

k

ρocp
∇2Θ

Momentum

Du

Dt
+ 2Ωẑ × u = − 1

ρo
∇p′ −

(bg
ρo

) 1
2
Θ + ν∇2u

Du

Dt
+ 2Ωẑ × u+NΘ = − 1

ρo
∇p′ + ν∇2u
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Show that p
ργ

is constant in an adiabatic ideal gas: This is done using the first law of

thermodynamics dQ = dû+dW and the equation of state for an ideal gas p = ρRT = 1
V
RT .

First, note that in an adiabatic gas, dQ = 0. Also, by definition dû = cvdT . The work
done by the gas is dW = pdV . Since V = ρ−1, we have dV = −dρ

ρ2
, so for an adiabatic ideal

gas, the first law becomes cvdT = pdρ
ρ2

= RT dρ
ρ

. To show that the value p
ργ

is constant, we
examine its differential.

d(
p

ργ
) = d(ρ1−γRT ) = Rρ1−γ[(1− γ)T

dρ

ρ
+ dT ]

= Rρ1−γ[(1− γ)T
dρ

ρ
+
p

cv

dρ

ρ2
] = Rρ1−γ[(1− γ)T

dρ

ρ
+
RT

cv

dρ

ρ
]

= Rρ1−γ Tdρ

ρ
[(1− γ) +

R

cv
] = 0

The proof that the potential temperature θ = T (ps
p

)
R
cp = CTpγ−1 is constant in an

adiabatic ideal gas is similar: This time, we use the first law of thermodynamics in a
different form. The work done by the gas is dW = pdV = R(dT − T dp

p
), so we write the

first law as cpdT −RT dp
p

= 0. From this we find dT = (1− γ)T dp
p

. Again, to show that θ is
constant, we examine its differential.

dθ = d(CTpγ−1) = Cpγ−1[dT + (γ − 1)T
dp

p
]

= Cpγ−1[(1− γ)T
dp

p
+ (γ − 1)T

dp

p
] = 0
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