Group 1:
Maya's Problem \#1
A) Set $\left(\begin{array}{c}\vec{u}_{h} \\ w \\ p \\ \theta\end{array}\right)=\left(\begin{array}{c}\hat{u}_{h}(z) \\ \hat{\hat{p}}(z) \\ \hat{P}(z) \\ \hat{\theta}(z)\end{array}\right) e^{i\left(\vec{k}_{h} \cdot \vec{x}_{h}-\sigma t\right)}$
plug into the equations, then we can get (without force terms)

$$
\left\{\begin{array}{c}
-i \sigma \hat{u}_{h}=-i \overrightarrow{k_{k}} \hat{p} \tag{1}\\
\frac{\partial \hat{p}}{\partial z}=\hat{\theta} \\
-i \sigma \hat{\theta}+\hat{w}=0 \\
i \vec{k}_{k} \cdot \hat{u}_{h}+\frac{\partial \hat{w}}{\partial z}=0
\end{array}\right.
$$

(3) $\Rightarrow \hat{\theta}=\frac{\hat{w}}{i \sigma}$
(2) $\Rightarrow \frac{\partial \hat{p}}{\partial z}=\frac{\hat{w}}{i \sigma}$

$$
\begin{aligned}
& \text { (1) } \Rightarrow \overrightarrow{k_{1}} \cdot \hat{u}_{h}=\frac{\left|k_{1}\right|^{2}}{\sigma} \hat{p} \\
& \text { (4) } \Rightarrow i \frac{\left|k_{h}\right|^{2}}{\sigma} \hat{p}+\frac{\partial \hat{w}}{\partial z}=0 \\
& \frac{\partial}{\partial z}(5) \Rightarrow \frac{\partial \hat{\omega}}{\partial z}+\frac{\mid k_{k_{1}} \sigma^{2}}{\sigma^{2}} \hat{w}=0 \quad \Rightarrow \hat{w}=A \cos \left(\frac{\left|k_{a}\right|}{\sigma} z\right)+B \sin \left(\frac{\left|k_{n}\right|}{\sigma} z\right)
\end{aligned}
$$

with Boundary conditions $\hat{W}(0)=\hat{W}(H)=0$
$\Rightarrow A=0, \quad \frac{\left|\vec{R}_{2}\right|}{\sigma} H=j \pi, \quad j$ can be any integer.

$$
\begin{aligned}
& \Rightarrow \quad \sigma_{j}=\frac{\| \vec{k}_{h} \mid H}{j \pi}, \quad j \in \mathbb{Z} \\
& \\
& \quad \hat{w} \sim \sin \left(\frac{j \pi}{H^{2} z} z\right), \hat{u_{h}} \sim \cos \left(\frac{j \pi}{H z} z\right), \quad \hat{p} \sim \cos \left(\frac{i z}{H z} z\right), \hat{\theta} \sim \sin \left(\frac{j \pi}{H} z\right) .
\end{aligned}
$$

So, we can set

Plug into the original equs,
combine then together to get

$$
\frac{\partial^{2} \tilde{\theta}_{j}}{\partial t^{2}}+\frac{H^{2}\left(\vec{k}_{n}{ }^{2}\right.}{(j \pi)^{2}} \tilde{\theta}_{j}-\frac{H}{j \pi}\left(\frac{j \pi}{H} \frac{\partial \tilde{\partial}_{\theta j}}{\partial t}+i \vec{k}_{n} \cdot \tilde{F}_{u j}\right)=0
$$

$e^{\left. \pm i \frac{i(R)}{j \pi} \right\rvert\,}$ are the homogenous solutions, so we cal use the following formula to construct a particular solution $\widetilde{\theta}_{j}^{p}$

Assume $y_{(t)}, y_{2}(t)$ are two linearly independent homogenous solutions of $\quad y^{\prime \prime}(t)+P(t) y^{\prime}(t)+Z(t) y(t)=f(t)$,
then we have one particular solution,

$$
\begin{aligned}
& y_{p}(t)=-y_{1(t)} \int \frac{y_{1}(t) f(t)}{\Omega(t)} d t+y_{(}(t) \int \frac{y_{(t)} f(t)}{\Omega(t)} d t \text {. } \\
& \Omega(t)=y_{1}(t) y^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)
\end{aligned}
$$

then we can get $\tilde{E}_{j}, \tilde{w}_{j}$ and \tilde{u}_{j}.
Plug into $(*)$, we can get \vec{u}_{h}, w, p and θ.

