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Turbulence Measurements

 Turbulence is a stochastic process, and 

hence must be studied via the statistics of 

the process.

 Homogeneity, isotropy, eddy dissipation 

rate: these are all defined via the statistics.



Important Statistical Characterizations

 Homogeneity:

“The probabilities for the components of the vector 

field at a number of points are invariant under rigid 

translations of the points and the vectors along 

which the components are computed.”

 Isotropy:

“The probabilities for the components of the vector 

field at a number of points are invariant under 

isometries of the points and the vectors along 

which the components are computed.”



Important Statistical Characterizations, 
cont’d

 An isometry is a length-preserving operator, e.g., 

translations, rotations, and/or reflections. That is, an 

orthogonal transformation, O , followed by a translation, T. 

 Let the components at the points be: 

 Then, isotropy is given by, (homogeneity is when O = I ):
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Importance of eddy dissipation rate as an 
intensity parameter

 Under appropriate simplifications (homogeneous, 

solenoidal, constant density flow; no transport, 

diffusion, and convection of energy), the turbulent 

kinetic energy equation can be written as:

 Furthermore, the Kolmogorov energy spectrum 

(isotropic turbulence in the inertial subrange) is:

de

dt
 
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Simulation Examples – A Cautionary Tale

 Wind field is generated so that it has correct 

spatial statistics

 This means that it will be aliased.

 An optional simulation incorporating an anti-aliasing 

filter is also used.

 The spectral model is a von Karman one. 

Inputs: 

 estimates from maximum likelihood 

method.
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Spectra from model and simulated data

Original Sim. Theoretical

Von Karman

Spectrum

(black)

Theoretical Sim. w/ anti-alias filter

(blue)

Calculated

Averaged

Spectra

(red dots)



Isotropy. Simulated data with versus        along a line.

Theory says,
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Homogeneity and sample size statistics:
Histogram of        over 10 and 40 second intervals.2/3

u

40 Second Windows

10 Second Windows

Number of samples



Kolomogorov energy spectrum:
Hence, the slope in log-log should be -5/3 – on average.
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Spectral Averaging

Procedure:

 Take as long of a segment of the time series where 

the data is reasonably stationary.

 Divide it into equal non-overlapping, or half-

overlapping, sub-segments.

 Apply a window function – especially important for 

shorter and/or overlapping windows.

 Compute the spectrum for each segment.

 Average the spectra frequency-by-frequency.



Spectral Averaging

Benefits:

 Reduces the random effects of 

turbulence. 

 It does not reduce the noise level but 

improves signal detectability, which 

leads to better parameter estimation.



Another simulation example – Illustrating the 
beneficial effects of spectral averaging

No 

Averaging

100 

Averages

10 Averages

1000 

Averages



Parameter Estimation

 This is a very deep and important subject, 

however, consider a simple one-parameter 

estimation approach: the maximum likelihood 

estimator (ML).

 Assume that the turbulence can be approximated 

as a product-model:

 Where a(t) is deterministic amplitude function, and 

x(t) is a realization from a zero-mean, unit-

amplitude, stationary random process.

( ) ( ) ( )y t a t x t



Parameter Estimation, cont’d.

 If a(t) is constant or varies at a much more 

lower frequency than x(t) does, then the 

auto-spectrum of y(t) can be written as:

 Assume that a(t) is a constant over the 

sampling interval, and it is the parameter of 

interest.

2( ) ( ) ( )yy xxf a t f  



Parameter Estimation, cont’d.

 Then, the maximum likelihood estimator for 

a is given by:

 Where, S is the measured spectrum, and 

the sum is taken over a frequency range 

wherein it is assumed that the model 

spectrum is valid.
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Parameter Estimation, cont’d.

 For example, take a time series of a 

component of the wind taken from an 

anemometer.

 Assume that the turbulence at higher 

frequencies is given by the Kolmogorov 

form:

 The ML estimate of      is given by:
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Quality Control of 
Measurement Data



Quality Control of Measurement Data

Rime ice accumulation

on Mt. top anemometers

in Juneau AK

“Hmmm… These winds

look a bit screwy.”



Quality Control of Measurement Data

 Examples of quality 
control problems.

 Time series and “lag 
plots.”

 Our eyes do a good 
job of finding the good 
data amongst the 
outliers. Except for the 
third one from the top –
the “good” data is 
hidden in the noise.



The Top 10 List for “Success with Sensors”

 Garbage in – garbage out. The more critical 

the application, the more important the QC.

 Whatever can go wrong with a sensor will 

go wrong.

 Your list of potential sensors failure modes 

is not long enough.



“Success with Sensors” Cont’d

 Do not believe the manufacturer:

 They’re trying to sell devices at the minimum cost 

to them.

 They usually use very simplistic QC methods.

 Processing at the rawest data level is best – may 

require modification to the device to make that 

available externally.

 Don’t trust their specifications.



“Success with Sensors” Cont’d

 Statistical methods are fine - as presented in the 

literature – the real world is another matter 

altogether:

 A theorem does not make for a good algorithm.

 Assumptions made in proving theorems are often violated 

with real data.

 Data with lots of outliers will kill their methods.

 Empirical methods may not make for a good journal article 

– but they work.

 No one publishes their failures.



“Success with Sensors” Cont’d

 A priori assumptions are dangerous –

model-free methods are more robust.

 Simulation is a great tool to start with, but 

you need to learn from real data.

 Typically, no one’s solved your problem –

but you can learn from other’s mistakes and 

successes. Use the literature – talk to 

colleagues.



“Success with Sensors” Cont’d

 There’s no simplistic or black box solution –

you have to understand the problem inside-

out. 

 There’s no substitute for hard work: “Do 

you want to explain why the wind farm had 

to be taken down because a bird defecated 

on a wind sensor?”



Issues Regarding Low SNR Measurements

 Low SNR means different things for different 
devices
 Radar: low reflectivity (hydrometeors)

 Lidar: low backscatter (aerosol density)

 Wind profilers: low index of refraction (temperature 
and/or humidity fluctuations)

 Anemometers: low wind speed

In each case, it is important to recognize 
when the device is giving meaningful

information – and when it isn’t.



Simulated Spectra with added Gaussian noise

EDR estimation algorithms (e.g., ML) can be modified to

accommodate additive noise – but this only works to a point.

Averaged

Spectra with

Anti-

Aliasing 

Filter.



Some time series QC algorithms that are 
useful

 Running Median Filter

 Simple to implement.

 Fairly efficient for reasonable window size.

 Works well for isolated outliers.

 Has “saturation” problem when > 1/2 of the 

samples in the window are bad. 

 Inherent ½ window length lag.



Some time series QC algorithms that are useful,
Cont’d

 Auto-regression methods

 Simple to implement.

 Very efficient.

 Works well for isolated outliers.

 Has problems with abrupt changes in data.

 Can “lock onto” bad signal if it is relatively smooth.



Some time series QC algorithms that are useful,
Cont’d

 Wavelets

 Fairly efficient.

 Works well for isolated outliers and step changes.

 Can also be used to filter low or high frequencies.

 Works well for non-stationary signals.

 Some “art” required in implementation.



Some time series QC algorithms that are useful,
Cont’d

 NCAR Improved Moment Algorithm (NIMA)

 Developed for wind profiler application – Doppler 

second moments can be used to calculate 

turbulence.

 Fuzzy logic image processing algorithm for finding 

atmospheric part of Doppler spectra in the 

presence of contaminants.

 Not very efficient.

 Very specific for the application.



The NIMA Method

 NIMA tries to imitate human experts using
 Mathematical analysis

 Fuzzy logic synthesis

 Global image processing

 Problem is broken down into smaller sub-
problems
 Doppler peak detection

 Clutter feature detection

 RFI feature detection

 Atmospheric feature detection

 Continuity assurance

 Confidence estimation 



Doppler spectra as a function

of range and velocity

Doppler spectra at one range

Slope information

Curvature information

RFI

contamination

Ground clutter

contamination

Wind



Before and after NIMA processing



Confidence

Before and after NIMA processing



Remote Sensing of 
Turbulence



Some time series QC algorithms that are useful,
Cont’d

 Intelligent Outlier Detection Algorithm 

(IODA)

 Very powerful times series QC and data 

classification algorithm.

 Handles larger numbers of outliers.

 Identifies some failure modes.

 Requires correlation structure in data. 

 Not very efficient.



Running Median (left) vs. IODA (right)



Remote Sensing of Turbulence: A Primer

 Remote sensing of turbulence is performed 
via active or passive sensors, and hence the 
measurements are typically highly affected 
by the sensor.

 The sensor acts as a “filter” on the 
atmospheric turbulence, and hence we are 
solving an inverse problem:

Given sensor measurements, and a model of 
the sensor, what was the turbulence that 
produced the measurements?



Remote Sensing of Turbulence: A Primer

 Measuring turbulence with active sensors

can be broken-down into two types of 

problems:

 Backscatter. Transmitter and receiver are typically 

at the same place. 

 Propagation. Transmitter and receiver are on 

opposite sides of the sample volume. (E&M, 

optical, acoustic)



Remote Sensing of Turbulence: A Primer

 Typical backscatter devices include: radars, 
lidars, and sodars.
 Radars reflect microwaves (mm to cm) off of 

hydrometeors (rain, snow, ice, etc.) and index of 
refraction fluctuations (typically, temperature or 
humidity variations).

 Lidars reflect photons off of aerosols (micron-
sized particulates)

 Sodars reflect acoustic waves off of index of 
refraction fluctuations (typically, temperature 
variations).



Remote Sensing of Turbulence: A Primer

 Typical propagation measurements of 

turbulence are obtained by mm-cm radio 

waves, optical and acoustic waves which 

are diffracted by temperature and/or 

humidity fluctuations in the index of 

refraction.



Remote Sensing of Turbulence: A Primer

 Passive sensors used to obtain 

measurements of turbulence are typically:

 Infrared devices which measure the re-radiated 

field from atmospheric atoms and molecules. The 

source typically being solar radiation re-radiated 

from the Earth’s surface.

 Optical sensors which measure the light coming 

from stars.



Remote Sensing of Turbulence: A Primer

 Returning to the “sensor as turbulence 

filter” problem…

 Consider a single input – single output 

relation:

x(t) y(t)“System”

Input signal Output signal



Remote Sensing of Turbulence: A Primer

 For a linear system, the mathematical 

relationship is a convolution integral:

 Where, h(t), is the unit impulse response 

function for the linear system.

 Taking the Fourier transform of both sides 

gives:
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Remote Sensing of Turbulence: A Primer

 Considering x(t) as being a stochastic and 

stationary signal, the input-output correlation 

and spectral relationships are:

Note the simplicity of the spectral relation.
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Remote Sensing of Turbulence: A Primer

 Where for a stationary signal s(t),
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Remote Sensing of Turbulence: A Primer

 The same relationships work for the 

components of a homogeneous spatial field, 

x(r). 
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Remote Sensing of Turbulence: A Primer

 Where the correlation and spectral 

relationships for a homogeneous field are:
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Remote Sensing of Turbulence: A Primer

 Consider a specific example: Doppler 

(backscatter) radar measurements of 

turbulence.

 Two approaches:

 Spatial spectrum of the radial velocities.

 Doppler second moment.



Remote Sensing of Turbulence: A Primer

 For both approaches, we need the following 

relationship:

 Where           is the normalized Doppler 

spectrum for the pulse volume centered at    

,         is the first moment of the Doppler 

spectrum, and u is the radial component of 

the wind field.

0 1 0 0( ) ( ) ( , )nv M u S u du  r r r
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Remote Sensing of Turbulence: A Primer

 Assuming uniform reflectivity (i.e., uniform 

hydrometeor size and distribution), it can be shown 

that the first moment can be written as a spatial 

integral:

 So that,

i.e., a spatial convolution.           is the pulse-volume 

illumination function – the response function for 

this problem.

0 0( , ) ( ( )) ( )n nS u u u I d   r r r r r
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Remote Sensing of Turbulence: A Primer

 From the convolution integral, the 

correlation and spectral relations can be 

obtained: 

0 0 0( , ) ( ) ( ) ( )vv uu n nR R I I d   r ρ ρ r r r ρ r r

2
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Remote Sensing of Turbulence: A Primer

 Assume that the radar pulse volume is narrow 
enough so that the radial velocities can be 
approximated via a Cartesian component.

 Assume that the velocity spectrum is isotropic, so 
that the coordinate system can be rotated such 
that the x-axis points along the radar beam.

 Assume that the turbulence spectrum can be 
modeled as                                       then,2/3
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x x x xu u u uF r k r k

2/3 0

2

0 0

( , )

( , ) ( , )
x x

vv

u u nF I







r k

r k r k



Remote Sensing of Turbulence: A Primer

 Next, consider the Doppler 2nd moment 

method (think of     as a PDF):

 Where in the last step it has been assumed 

that the turbulence is isotropic. 
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Remote Sensing of Turbulence: A Primer

 Next, take the inverse Fourier transform of 

the right-hand side.

 Using the same assumptions as above:

2

0( ) ( , )uuu d r r k k

2 2

1 0 0 0( ) ( , ) ( , )uu nM I d r r k r k k

2 02/3

2

0 0

( )

( , ) 1 ( , )
x xu u n

M

F I d
 

   

r

r k r k k



Examples of 
Measurements and 
Remote Sensing of 

Turbulence in Support of 
the Aviation Community.



The Motivation

 Turbulence is the main cause of 
in-flight injuries – for both 
passengers and flight 
attendants.

 After a severe encounter, the 
airline has to perform a 
structural check on the aircraft.

 Pilots will try to re-route around 
an area if there have been 
reports of moderate or greater 
turbulence.

Bottom-line: Turbulence is a safety 
problem as well as having a 
large financial impact on the 
airlines.

Weather-related 

accidents for large 

transport aircraft

Part 121

Turbulence

Precip

Tstorm & 

windshear

Icing

Temp winds
Other

Ceil & Vis



DC-8 Cargo Aircraft Damaged Due to Extreme 

Turbulence

Missing

Something?



The Turbulence Problem for Aviation
(Grossly Oversimplified)

“Turbulent eddies larger than 100 meters and smaller 

than 3000 meters (approximately) produce aircraft 

motions which can be difficult -- or impossible -- to 

control.

With small-amplitude eddies, these induced motions 

may be simply uncomfortable to passengers. Large 

amplitude eddies, on the other hand, can result in 

passenger injuries or even structural damage to the 

aircraft.”



Turbulence Scales of Motion
Large eddies “Turbulent” 

eddies
Small eddies

10’s 

km

cm

Aircraft responds to scales 

from approx. 100 m – 3 km 

NWP

resolution

Mesoscale

model

resolution

Fine-scale

model

resolution



The product of the response
function and the wind 
spectrum gives the output 
spectrum.

2000 m 100 m 

Von Karman

Spectra

Response Function for 

Transport Aircraft



The Need For Turbulence Measurements

 Tactical:

 Real time alerts of eminent encounter (< 1 min.)

 Turn seat belt sign on.

 Get passengers seated and in seatbelts.

 Get service carts stowed and flight attendants seated.

 Real time alerts/nowcast of impending encounter (< 15 
min.)

 All of the above.

 Change altitude.

 Change flight path.



The Need For Turbulence Measurements

 Strategic:

 Nowcast/Forecast of potential encounter (en route)

 Increase pilot awareness.

 Discussions with airline Dispatch personnel.

 Discussions with en route air traffic personnel.

 Consider altitude/course change.

 Forecast of potential encounter (pre-flight)

 Pre-flight awareness for pilot/Dispatch.

 Consider re-routing flight path.



In situ Turbulence Measurement and 
Reporting System

Goal: To augment/replace 
subjective PIREPs with 
objective and precise 
turbulence 
measurements.

Features:

 Atmospheric turbulence 
metric: eddy dissipation 
rate (EDR).

 EDR can be scaled into 
aircraft turbulence 
response metric (RMS-g).

 Adopted as ICAO 
Standard 



Increase in Spatial/temporal Coverage: UAL EDR 
Reports Compared to pireps

1.3 million EDR reports/month from 

100 or so aircraft - compared to 55k 

pireps from all aircraft. 737

757

737

+

757



In situ measurement and reporting system

 Implemented on ~ 200 UAL 
aircraft since 2000

 Implementation status

 SWA: Fleet implementation 
on ~ 280 737-700s in CY08

 DAL: Fleet implementation 
on ~ 120 737-800s in CY08

 NWA: Discussions ongoing 
for implementation on ~ 140 
Airbus 319/320s and 56 787s

 UAL: 757 ACMS replacement

 AAL: Discussions ongoing

Website: UAL 757 edr flight 

tracks overlaid on GTG 

forecasting product



Radar 
Measurements of 

Turbulence



NASA Airborne Radar Detection of Turbulence Program

1
9
:1

3
:4

4

RMS g-load

RMS winds

1
9
:1

2
:0

2

From 

NASA

B-757 

Aircraft



Event 232-10 (19:12:02, 19:12:13, 19:12:25)

-1:42 -1:31

-1:19

Hazard detected

1:19, 18 km to 

encounter



Event 232-10 (reflectivities at 19:12:25)

-1:19



Event 232-10 (19:12:37, 19:12:49, 19:13:01)

-0:43

-0:55-1:07

Persistent 

detection



Flight Track for NASA flight R232

Event

R232-10

North-Central

Alabama



FY00 Juneau Field 

Project Equipment

Doppler on Wheels 

(DOW)



DOW Radar Data Showing Terrain-Induced Turbulence

for Two Different Wind Directions

Wind DirectionWind Direction



Detection of Turbulence Using an Airborne 
Forward-Looking IR Sensor

 Possible Approach:

 Derive equation that relates the statistics of the atmospheric 

turbulence (e.g., temperature field) to those of the sensor 

measurables.

 Consider the irradiance (H) at a given frequency, measured at the 

aircraft (x=0):

Where      is the Planck function, L is the path length over which the 

measurement is made, and f is a combined function of the non-

turbulent atmosphere and the response characteristics of the 

sensor.
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Detection of Turbulence Using an Airborne 
Forward-Looking IR Sensor

 Next, consider the same measurement 

when the aircraft has moved a distance    :

 Assuming that the Planck function is linear 

in the temperature, the correlation function 

of the irradiances can be computed:


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Detection of Turbulence Using an Airborne 
Forward-Looking IR Sensor

 Assuming that standard turbulence theory applies, 

, where      is the intensity parameter 

of the turbulent temperature field. In principle the turbulence 

intensity parameter is given by:
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Detection of Turbulence Using an Airborne 
Forward-Looking IR Sensor

 Issues:

 Aircraft respond to vertical wind motions, not 

temperature fluctuations - the relationship 

between the two is not well-understood.

 To what spatial scales are these IR devices 

sensitive?



Turbulence Detection 
via Airborne GPS 

Receivers



Turbulence Detection via Airborne GPS 
Receivers: The Concept

 Airborne receivers would be a platform of 

opportunity to collect occultations in the 

cruise regime of commercial aviation, e.g., 

20-40 kft. AGL.

 The turbulence measurements from these 

occultations would probably not be used as 

stand-alone information, but integrated into 

operational nowcast/forecast products.



is the distance, along the 

LOS, from the satellite to the 

center of the turbulence 

patch.

R is the distance from the 

satellite to the aircraft 

receiver along LOS. 

is the width of the 

turbulence patch along LOS.

is the distance from 

the aircraft to the turbulence 

patch.
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Theory (Condensed Version)

 Use standard weak scattering wave propagation theory -

modified to accommodate moving transmitter and receiver, 

and localized turbulence patch.

 Log-amplitude frequency spectrum for a turbulence patch in 

the neutral atmosphere at       and  width      is functionally 

given by:  

 Where k is the transmitter wavenumber,      is the 

turbulence length scale,           is the turbulence intensity, 

and             is an effective velocity.
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Analysis

 The objective is to determine where the 

turbulence is along the LOS,     , and what 

the intensity          , is at that location.

 Note that the comparable expression for 

turbulence in the ionosphere is given by a 

different constant and a change in the 

wavenumber functionality      to     . 

In the following, a mid-point approximation 

to the integral was used.
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Example Spectra (constant intensity)

Holding                           

fixed and varying      .
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Spectral Simulation

Log-Amplitude Spectrum: theory and simulated.

25 Hz.



Parameter Estimation

Maximum Likelihood (ML) estimation of intensity with fixed             

while varying      .  Horizontal and vertical lines are 

simulated (i.e., “true”) values.
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Parameter Estimation (cont’d)

ML estimation of intensity with fixed                   

while varying             .
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• ML estimation of intensity for un-averaged spectra (left) and       

10 spectral averages (right). 

• Solid vertical line is true value.

• Blue values are from using the high-frequency portion of the 

spectrum, red values use all the spectral points.

• Simulated             value is  100 km, “guess” is 10 km  - i.e., 

underestimate.
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Iterative Parameter Estimation

Estimation of       by minimization method. Un-

averaged spectra (left) and 10 spectral averages 

(right).
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Iterative Parameter Estimation

ML estimation of intensity  after using       estimates. 

Un-averaged spectra (left) and 10 spectral averages 

(right). 

1




Summary

 Turbulence measurements are critical in providing 
accurate and operationally useful tactical and strategic 
information to users.

 In situ turbulence measurements are now available and 
used operationally – more to come. 

 A number of proof-of-concept sensor demonstrations 
have occurred, with positive results.

 Other technologies in development/evaluation:
 Airborne lidar

 Satellite

 GPS/Iridium

 Airborne IR




