In Situ and Remote Sensing of Turbulence

Larry B. Cornman Research Applications Laboratory National Center for Atmospheric Research

Turbulence Measurements

- Turbulence is a stochastic process, and hence must be studied via the statistics of the process.
- Homogeneity, isotropy, eddy dissipation rate: these are all *defined* via the statistics.

Important Statistical Characterizations

Homogeneity:

"The probabilities for the components of the vector field at a number of points are invariant under rigid translations of the points and the vectors along which the components are computed."

Isotropy:

"The probabilities for the components of the vector field at a number of points are invariant under isometries of the points and the vectors along which the components are computed."

Important Statistical Characterizations, cont'd

- An *isometry* is a length-preserving operator, e.g., translations, rotations, and/or reflections. That is, an orthogonal transformation, *O*, followed by a translation, *T*.
- Let the components at the points be:

$$\omega_1 = \mathbf{u}(\mathbf{x}_1) \Box \mathbf{a}_1, \ \omega_2 = \mathbf{u}(\mathbf{x}_2) \Box \mathbf{a}_2 \cdots \ \omega_n = \mathbf{u}(\mathbf{x}_n) \Box \mathbf{a}_n$$

$$\omega_1' = \mathbf{u}((T \circ O)\mathbf{x}_1) \Box O\mathbf{a}_1, \ \omega_2' = \mathbf{u}((T \circ O)\mathbf{x}_2) \Box O\mathbf{a}_2 \cdots \ \omega_n' = \mathbf{u}((T \circ O)\mathbf{x}_n) \Box O\mathbf{a}_n$$

• Then, isotropy is given by, (homogeneity is when O = I): $P(c_1 \le \omega_1 \le d_1, c_2 \le \omega_2 \le d_2, \cdots c_n \le \omega_n \le d_n)$ $= P(c_1 \le \omega'_1 \le d_1, c_2 \le \omega'_2 \le d_2, \cdots c_n \le \omega'_n \le d_n)$

Importance of eddy dissipation rate as an intensity parameter

Under appropriate simplifications (homogeneous, solenoidal, constant density flow; no transport, diffusion, and convection of energy), the turbulent kinetic energy equation can be written as:

$$\frac{de}{dt} = -\varepsilon$$

Furthermore, the Kolmogorov energy spectrum (isotropic turbulence in the inertial subrange) is:

$$E(k) = A \varepsilon^{2/3} k^{-5/3}$$

Simulation Examples – A Cautionary Tale

- Wind field is generated so that it has correct spatial statistics
 - This means that it will be aliased.
 - An optional simulation incorporating an anti-aliasing filter is also used.
- The spectral model is a von Karman one. Inputs: σ = 5.0ms⁻¹, L_u = 500m, ε^{2/3} = 0.545m^{4/3}s⁻²
 ε^{2/3} estimates from maximum likelihood

method.

Spectra from model and simulated data

Isotropy. Simulated data with $\varepsilon_u^{2/3}$ versus $\varepsilon_w^{2/3}$ along a line. Theory says, $\langle \varepsilon_u^{2/3} \rangle = \langle \varepsilon_w^{2/3} \rangle$

5 sec. windows

20 sec. windows

10 sec. windows

40 sec. windows

Homogeneity and sample size statistics: Histogram of $\varepsilon_{u}^{2/3}$ over 10 and 40 second intervals.

Kolomogorov energy spectrum: $E(k) = A\varepsilon^{2/3}k^{-5/3}$ Hence, the slope in log-log should be -5/3 - on average.

10 Second Windows

40 Second Windows

Spectral Averaging

Procedure:

- Take as long of a segment of the time series where the data is reasonably stationary.
- Divide it into equal non-overlapping, or halfoverlapping, sub-segments.
- Apply a window function especially important for shorter and/or overlapping windows.
- Compute the spectrum for each segment.
- Average the spectra frequency-by-frequency.

Spectral Averaging

Benefits:

- Reduces the random effects of turbulence.
- It does not reduce the noise level but improves signal detectability, which leads to better parameter estimation.

Another simulation example – Illustrating the beneficial effects of spectral averaging

Parameter Estimation

- This is a very deep and important subject, however, consider a simple one-parameter estimation approach: the maximum likelihood estimator (ML).
- Assume that the turbulence can be approximated as a product-model:

y(t) = a(t)x(t)

Where a(t) is deterministic amplitude function, and x(t) is a realization from a zero-mean, unitamplitude, stationary random process.

Parameter Estimation, cont'd.

If a(t) is constant or varies at a much more lower frequency than x(t) does, then the auto-spectrum of y(t) can be written as:

 $\Phi_{yy}(f) = a^2(t)\Phi_{xx}(f)$

Assume that a(t) is a constant over the sampling interval, and it is the parameter of interest.

Parameter Estimation, cont'd.

Then, the maximum likelihood estimator for a is given by:

$$\hat{a} = \frac{1}{N} \sum_{i=1}^{N} \frac{S_{yy}(f_i)}{\Phi_{xx}(f_i)}$$

Where, S is the measured spectrum, and the sum is taken over a frequency range wherein it is assumed that the model spectrum is valid.

Parameter Estimation, cont'd.

- For example, take a time series of a component of the wind taken from an anemometer.
- Assume that the turbulence at higher frequencies is given by the Kolmogorov form: $\Phi_{xx}(f) = C\varepsilon^{2/3}f^{-5/3}$
- The ML estimate of $\varepsilon^{2/3}$ is given by:

$$\hat{\varepsilon}^{2/3} = \frac{1}{N} \sum_{i=1}^{N} \frac{S_{yy}(f_i)}{C f_i^{-5/3}}$$

Quality Control of Measurement Data

Quality Control of Measurement Data

"Hmmm... These winds look a bit screwy."

Rime ice accumulation on Mt. top anemometers in Juneau AK

Quality Control of Measurement Data

- Examples of quality control problems.
- Time series and "lag plots."
- Our eyes do a good job of finding the good data amongst the outliers. Except for the third one from the top – the "good" data is hidden in the noise.

The Top 10 List for "Success with Sensors"

- Garbage in garbage out. The more critical the application, the more important the QC.
- Whatever can go wrong with a sensor will go wrong.
- Your list of potential sensors failure modes is not long enough.

- Do not believe the manufacturer:
 - They're trying to sell devices at the minimum cost to them.
 - They usually use very simplistic QC methods.
 - Processing at the rawest data level is best may require modification to the device to make that available externally.
 - Don't trust their specifications.

- Statistical methods are fine as presented in the literature – the real world is another matter altogether:
 - A theorem does not make for a good algorithm.
 - Assumptions made in proving theorems are often violated with real data.
 - Data with lots of outliers will kill their methods.
 - Empirical methods may not make for a good journal article – but they work.
 - No one publishes their failures.

- A priori assumptions are dangerous model-free methods are more robust.
- Simulation is a great tool to start with, but you need to learn from real data.
- Typically, no one's solved your problem but you can learn from other's mistakes and successes. Use the literature – talk to colleagues.

- There's no simplistic or black box solution you have to understand the problem insideout.
- There's no substitute for hard work: "Do you want to explain why the wind farm had to be taken down because a bird defecated on a wind sensor?"

Issues Regarding Low SNR Measurements

- Low SNR means different things for different devices
 - Radar: low reflectivity (hydrometeors)
 - Lidar: low backscatter (aerosol density)
 - Wind profilers: low index of refraction (temperature and/or humidity fluctuations)
 - Anemometers: low wind speed

In each case, it is important to recognize when the device is giving meaningful information – and when it isn't.

NCAR

Some time series QC algorithms that are useful

Running Median Filter

- Simple to implement.
- Fairly efficient for reasonable window size.
- Works well for isolated outliers.
- Has "saturation" problem when > 1/2 of the samples in the window are bad.
- Inherent ½ window length lag.

Some time series QC algorithms that are useful, Cont'd

Auto-regression methods

- Simple to implement.
- Very efficient.
- Works well for isolated outliers.
- Has problems with abrupt changes in data.
- Can "lock onto" bad signal if it is relatively smooth.

Some time series QC algorithms that are useful, Cont'd

Wavelets

- Fairly efficient.
- Works well for isolated outliers and step changes.
- Can also be used to filter low or high frequencies.
- Works well for non-stationary signals.
- Some "art" required in implementation.

Some time series QC algorithms that are useful, Cont'd

NCAR Improved Moment Algorithm (NIMA)

- Developed for wind profiler application Doppler second moments can be used to calculate turbulence.
- Fuzzy logic image processing algorithm for finding atmospheric part of Doppler spectra in the presence of contaminants.
- Not very efficient.
- Very specific for the application.

The NIMA Method

– NIMA tries to imitate human experts using

- Mathematical analysis
- Fuzzy logic synthesis
- Global image processing
- Problem is broken down into smaller subproblems
 - Doppler peak detection
 - Clutter feature detection
 - RFI feature detection
 - Atmospheric feature detection
 - Continuity assurance
 - Confidence estimation

NCAR

Remote Sensing of Turbulence

Some time series QC algorithms that are useful, Cont'd

- Intelligent Outlier Detection Algorithm (IODA)
 - Very powerful times series QC and data classification algorithm.
 - Handles larger numbers of outliers.
 - Identifies some failure modes.
 - Requires correlation structure in data.
 - Not very efficient.

Running Median (left) vs. IODA (right)

- Remote sensing of turbulence is performed via active or passive sensors, and hence the measurements are typically highly affected by the sensor.
- The sensor acts as a "filter" on the atmospheric turbulence, and hence we are solving an inverse problem:

Given sensor measurements, and a model of the sensor, what was the turbulence that produced the measurements?

- Measuring turbulence with active sensors can be broken-down into two types of problems:
 - Backscatter. Transmitter and receiver are typically at the same place.
 - Propagation. Transmitter and receiver are on opposite sides of the sample volume. (E&M, optical, acoustic)

- Typical backscatter devices include: radars, lidars, and sodars.
 - Radars reflect microwaves (mm to cm) off of hydrometeors (rain, snow, ice, etc.) and index of refraction fluctuations (typically, temperature or humidity variations).
 - Lidars reflect photons off of aerosols (micronsized particulates)
 - Sodars reflect acoustic waves off of index of refraction fluctuations (typically, temperature variations).

Typical propagation measurements of turbulence are obtained by mm-cm radio waves, optical and acoustic waves which are diffracted by temperature and/or humidity fluctuations in the index of refraction.

- Passive sensors used to obtain measurements of turbulence are typically:
 - Infrared devices which measure the re-radiated field from atmospheric atoms and molecules. The source typically being solar radiation re-radiated from the Earth's surface.
 - Optical sensors which measure the light coming from stars.

- Returning to the "sensor as turbulence filter" problem...
- Consider a single input single output relation:

For a linear system, the mathematical relationship is a convolution integral:

$$y(t) = \int_{0}^{\infty} h(\tau) x(t-\tau) d\tau$$

- Where, h(t), is the unit impulse response function for the linear system.
- Taking the Fourier transform of both sides
 gives: Y(f) = H(f)X(f)

Considering x(t) as being a stochastic and stationary signal, the input-output correlation and spectral relationships are:

$$R_{yy}(\tau) = \int_{0}^{\infty} \int_{0}^{\infty} h(\alpha)h(\beta)R_{xx}(\tau + \beta - \alpha)d\alpha d\beta$$

$$\Phi_{yy}(f) = \left| H(f) \right|^2 \Phi_{xx}(f)$$

Note the simplicity of the spectral relation.

Where for a stationary signal s(t),

$$R_{ss}(\tau) = \left\langle s(t)s(t+\tau) \right\rangle$$
$$\Phi_{ss}(f) = \int_{0}^{\infty} R_{ss}(\tau)e^{-2\pi f\tau}d\tau$$
$$= \left\langle Y(f)Y^{*}(f) \right\rangle$$

The same relationships work for the components of a homogeneous spatial field, x(r).

$$y_i(\mathbf{r}) = \iint_0 \iint_0 h(\mathbf{\rho}) x_i(\mathbf{r} - \mathbf{\rho}) d\mathbf{\rho}$$

 $Y_i(\mathbf{k}) = \left| H(\mathbf{k}) \right|^2 X_i(\mathbf{k})$

Where the correlation and spectral relationships for a homogeneous field are:

$$R_{s_is_j}(\mathbf{\rho}) = \left\langle s_i(\mathbf{r})s_j(\mathbf{r}+\mathbf{\rho}) \right\rangle$$

$$\Phi_{s_i s_j}(\mathbf{k}) = \int_0^\infty R_{s_i s_j}(\mathbf{\rho}) e^{-2\pi \mathbf{k} \Box \mathbf{\rho}} d\mathbf{\rho}$$

- Consider a specific example: Doppler (backscatter) radar measurements of turbulence.
- Two approaches:
 - Spatial spectrum of the radial velocities.
 - Doppler second moment.

For both approaches, we need the following relationshipiv(r₀) ≡ M₁(r₀) = ∫u Sₙ(u, r₀)du
 Where Sₙ(u, r₀) is the normalized Doppler spectrum for the pulse volume centered at r₀, M₁(r₀) is the first moment of the Doppler spectrum, and u is the radial component of the wind field.

Assuming uniform reflectivity (i.e., uniform hydrometeor size and distribution), it can be shown that the first moment can be written as a spatial integral: $S_{i}(u, n) = \int S(u, u(n)) I_{i}(n, n) dn$

$$S_n(u,\mathbf{r}_0) = \int \delta(u - u(\mathbf{r})) I_n(\mathbf{r} - \mathbf{r}_0) d\mathbf{r}$$

- So that, $v(\mathbf{r}_0) = \int u(\mathbf{r}) I_n(\mathbf{r} \mathbf{r}_0) d\mathbf{r}$
- i.e., a spatial convolution. $I_n(\mathbf{r}-\mathbf{r}_0)$ is the pulse-volume illumination function the response function for this problem.

From the convolution integral, the correlation and spectral relations can be obtained:

$$R_{\nu\nu}(\mathbf{r}_0,\boldsymbol{\rho}) = \int R_{\mu\mu}(\boldsymbol{\rho}) I_n(\mathbf{r}-\mathbf{r}_0) I_n(\mathbf{r}+\boldsymbol{\rho}-\mathbf{r}_0) d\mathbf{r}$$

$$\Phi_{\nu\nu}(\mathbf{r}_0,\mathbf{k}) = \Phi_{\mu\mu}(\mathbf{r}_0,\mathbf{k})I_n^2(\mathbf{r}_0,\mathbf{k})$$

- Assume that the radar pulse volume is narrow enough so that the radial velocities can be approximated via a Cartesian component.
- Assume that the velocity spectrum is isotropic, so that the coordinate system can be rotated such that the x-axis points along the radar beam.
- Assume that the turbulence spectrum can be modeled as $\Phi_{u_x u_x}(\mathbf{r}_0, \mathbf{k}) = \varepsilon^{2/3} F_{u_x u_x}(\mathbf{r}_0, \mathbf{k})$ then,

$$\varepsilon^{2/3} = \frac{\Phi_{vv}(\mathbf{r}_0, \mathbf{k})}{F_{u_x u_x}(\mathbf{r}_0, \mathbf{k}) I_n^2(\mathbf{r}_0, \mathbf{k})}$$

Next, consider the Doppler 2nd moment method (think of I_n as a PDF):

$$M_{2}(\mathbf{r}_{0}) \rangle = \int \left\langle \left[u(\mathbf{r}) - M_{1}(\mathbf{r}_{0}) \right]^{2} \right\rangle I_{n}(\mathbf{r} - \mathbf{r}_{0}) d\mathbf{r} \right.$$
$$= \int \left\langle u^{2}(\mathbf{r}) \right\rangle I_{n}(\mathbf{r} - \mathbf{r}_{0}) d\mathbf{r} - \left\langle M_{1}^{2}(\mathbf{r}_{0}) \right\rangle$$
$$= \left\langle u^{2}(\mathbf{r}) \right\rangle - \int R_{uu}(\mathbf{r}, \mathbf{\rho}) I_{n}(\mathbf{r} - \mathbf{r}_{0}) I_{n}(\mathbf{r} + \mathbf{\rho} - \mathbf{r}_{0}) d\mathbf{r} d\mathbf{\rho}$$

Where in the last step it has been assumed that the turbulence is isotropic.

Next, take the inverse Fourier transform of the right-hand side.

$$\left\langle u^{2}(\mathbf{r})\right\rangle = \int \Phi_{uu}(\mathbf{r}_{0},\mathbf{k})d\mathbf{k}$$
$$\left\langle M_{1}^{2}(\mathbf{r}_{0})\right\rangle = \int \Phi_{uu}(\mathbf{r}_{0},\mathbf{k})I_{n}^{2}(\mathbf{r}_{0},\mathbf{k})d\mathbf{k}$$

Using the same assumptions as above:

$$\varepsilon^{2/3} = \frac{\left\langle M_2(\mathbf{r}_0) \right\rangle}{\int F_{u_x u_x}(\mathbf{r}_0, \mathbf{k}) \left[1 - I_n^2(\mathbf{r}_0, \mathbf{k}) \right] d\mathbf{k}}$$

Examples of Measurements and Remote Sensing of Turbulence in Support of the Aviation Community.

The Motivation

- Turbulence is the main cause of in-flight injuries – for both passengers and flight attendants.
- After a severe encounter, the airline has to perform a structural check on the aircraft.
- Pilots will try to re-route around an area if there have been reports of moderate or greater turbulence.

Bottom-line: Turbulence is a safety problem as well as having a large financial impact on the airlines.

DC-8 Cargo Aircraft Damaged Due to Extreme Turbulence

The Turbulence Problem for Aviation (Grossly Oversimplified)

- "Turbulent eddies larger than 100 meters and smaller than 3000 meters (approximately) produce aircraft motions which can be difficult -- or impossible -- to control.
- With small-amplitude eddies, these induced motions may be simply uncomfortable to passengers. Large amplitude eddies, on the other hand, can result in passenger injuries or even structural damage to the aircraft."

The product of the response function and the wind spectrum gives the output spectrum.

Response Function for Transport Aircraft

The Need For Turbulence Measurements

Tactical:

Real time alerts of eminent encounter (< 1 min.)</p>

- Turn seat belt sign on.
- Get passengers seated and in seatbelts.
- Get service carts stowed and flight attendants seated.
- Real time alerts/nowcast of impending encounter (< 15 min.)
 - All of the above.
 - Change altitude.
 - Change flight path.

The Need For Turbulence Measurements

Strategic:

- Nowcast/Forecast of potential encounter (en route)
 - Increase pilot awareness.
 - Discussions with airline Dispatch personnel.
 - Discussions with en route air traffic personnel.
 - Consider altitude/course change.
- Forecast of potential encounter (pre-flight)
 - Pre-flight awareness for pilot/Dispatch.
 - Consider re-routing flight path.

In situ Turbulence Measurement and Reporting System

Goal: To augment/replace subjective PIREPs with objective and precise turbulence measurements.

Features:

- Atmospheric turbulence metric: eddy dissipation rate (EDR).
- EDR can be scaled into aircraft turbulence response metric (RMS-g).
- Adopted as ICAO Standard

Increase in Spatial/temporal Coverage: UAL EDR Reports Compared to pireps

1.3 million EDR reports/month from 100 or so aircraft - compared to 55k pireps from all aircraft.

10000 20000 30000 40000 50000 Altitudents 737

757

737

+ 757

In situ measurement and reporting system

- Implemented on ~ 200 UAL aircraft since 2000
- Implementation status
 - SWA: Fleet implementation on ~ 280 737-700s in CY08
 - DAL: Fleet implementation on ~ 120 737-800s in CY08
 - NWA: Discussions ongoing for implementation on ~ 140 Airbus 319/320s and 56 787s
 - UAL: 757 ACMS replacement
 - AAL: Discussions ongoing

Website: UAL 757 edr flight tracks overlaid on GTG forecasting product

Radar Measurements of Turbulence

NASA Airborne Radar Detection of Turbulence Program

From NASA B-757 Aircraft

Event 232-10 (19:12:02, 19:12:13, 19:12:25)

Event 232-10 (reflectivities at 19:12:25)

Event 232-10 (19:12:37, 19:12:49, 19:13:01)

Flight Track for NASA flight R232

FY00 Juneau Field Project Equipment

Doppler on Wheels (DOW)

DOW Radar Data Showing Terrain-Induced Turbulence for Two Different Wind Directions

- Possible Approach:
 - Derive equation that relates the statistics of the atmospheric turbulence (e.g., temperature field) to those of the sensor measurables.
 - Consider the irradiance (H) at a given frequency, measured at the aircraft (x=0):

$$H(0) = \int_{L}^{0} W_B(T(x))f(x)dx$$

Where W_B is the Planck function, L is the path length over which the measurement is made, and f is a combined function of the non-turbulent atmosphere and the response characteristics of the sensor.

- Next, consider the same measurement when the aircraft has moved a distance ρ : $H(\rho) = \int_{r_{+}}^{\rho} W_B(T(x))f(x)dx$
- Assuming that the Planck function is linear in the temperature, the correlation function of the irradiances can be computed:

$$\left\langle H(0)H(\rho)\right\rangle = K \int_{L}^{0} \int_{L+\rho}^{\rho} \left\langle T(x)T(x')\right\rangle f(x)f(x')dxdx'$$

Assuming that standard turbulence theory applies, $\langle T(x)T(x') \rangle = C_T^2 g(x'-x)$, where C_T^2 is the intensity parameter of the turbulent temperature field. In principle the turbulence intensity parameter is given by:

$$C_T^2 = \frac{\langle H(0)H(\rho) \rangle}{K \int_{LL+\rho}^0 \int_{LL+\rho}^{\rho} g(x'-x)f(x)f(x')dxdx'}$$

Issues:

- Aircraft respond to vertical wind motions, not temperature fluctuations - the relationship between the two is not well-understood.
- To what spatial scales are these IR devices sensitive?

Turbulence Detection via Airborne GPS Receivers

Turbulence Detection via Airborne GPS Receivers: The Concept

- Airborne receivers would be a platform of opportunity to collect occultations in the cruise regime of commercial aviation, e.g., 20-40 kft. AGL.
- The turbulence measurements from these occultations would probably not be used as stand-alone information, but integrated into operational nowcast/forecast products.

Geometry of the Problem

 $-\eta_1$

 η_1 is the distance, along the LOS, from the satellite to the center of the turbulence patch.

R is the distance from the satellite to the aircraft receiver along LOS.

 $\Delta\eta$ is the width of the turbulence patch along LOS.

 $R - \eta_1$ is the distance from the aircraft to the turbulence patch.

Theory (Condensed Version)

- Use standard weak scattering wave propagation theory modified to accommodate moving transmitter and receiver, and localized turbulence patch.
- Log-amplitude frequency spectrum for a turbulence patch in the neutral atmosphere at η_1 and width $\Delta \eta$ is functionally given by:

$$\Phi_{\chi}(f) = C \int_{\eta_1 - \Delta \eta/2}^{\eta_1 + \Delta \eta/2} F \Big[C_n^2(\eta), V_{eff}(\eta), L_0, R, k, f; \eta \Big] d\eta$$

• Where **k** is the transmitter wavenumber, L_0 is the turbulence length scale, $C_n^2(\eta)$ is the turbulence intensity, and $V_{eff}(\eta)$ is an effective velocity.

Analysis

- The objective is to determine where the turbulence is along the LOS, η_1 , and what the intensity $C_n^2(\eta_1)$, is at that location.
- Note that the comparable expression for turbulence in the ionosphere is given by a different constant and a change in the wavenumber functionality k² to k⁻².

In the following, a mid-point approximation to the integral was used.

Example Spectra (constant intensity)

Holding $L_0 = 3 \, km$ fixed

and varying $R - \eta_1$.

Holding $R - \eta_1 = 100 \, km$ fixed and varying L_0 .

10

10

Note strong functionality on $R - \eta_1$ and weak on L_0 .

10

10

10

10

10

L0: 0.100 R-ETA,: 100.000

L0: 1.000 R-ETA,: 100.000

L0. 3.800 R-ETA,: 100.000

0 7,000 R-ETA,: 100,000

10

€,

k: 20000.0 (rad km 1)

1 2 mm 2 0 .V

100

R: 2.598e+04 pimi A: 3.300e-02

simulated (i.e., "true") values.

Parameter Estimation (cont'd)

- ML estimation of intensity for un-averaged spectra (left) and 10 spectral averages (right).
- Solid vertical line is true value.
- Blue values are from using the high-frequency portion of the spectrum, red values use all the spectral points.

• Simulated $R - \eta_1$ value is 100 km, "guess" is 10 km - i.e., underestimate.

Estimation of η_1 by minimization method. Unaveraged spectra (left) and 10 spectral averages (right).

ML estimation of intensity after using η_1 estimates. Un-averaged spectra (left) and 10 spectral averages (right).

Summary

- Turbulence measurements are critical in providing accurate and operationally useful tactical and strategic information to users.
- In situ turbulence measurements are now available and used operationally more to come.
- A number of proof-of-concept sensor demonstrations have occurred, with positive results.
- Other technologies in development/evaluation:
 - Airborne lidar
 - Satellite
 - GPS/Iridium
 - Airborne IR

