Regional Scale Modeling and Numerical Weather Prediction

Jimy Dudhia NCAR/MMM

Mesoscale & Microscale Meteorological Division / NCAR

Overview of talk

- WRF Modeling System Overview
- WRF Model
 - Dynamics
 - Physics relevant to turbulence
 - PBL schemes and diffusion
- Regional Climate Modeling
- Numerical Weather Prediction
- WRF Examples
 - Convection forecasting
 - Energy spectrum in NWP models
 - Hurricane forecasting and sensitivity to physics
 - Idealized LES hurricane testing

Modeling System Components

- WRF Pre-processing System (WPS)
 Real-data interpolation for NWP runs
- WRF-Var (including 3d-Var)
 - Adding observations to improve initial conditions
- WRF Model (Eulerian mass dynamical core)
 - Initialization programs for real and idealized data (real.exe/ideal.exe)
 - Numerical integration program (wrf.exe)
- Graphics tools

WRF Preprocessing System

• GEOGRID program (time-independent data)

- Define domain areas
- Interpolate "static" fields to domain
 - Elevation, land-use, soil type, etc.
- Calculate derived arrays of constants
 - Map factors, Coriolis parameter, etc.
- METGRID program (time-dependent data)
 - Interpolate gridded time-dependent data to domain
 - Pressure level data: geopotential height, temperature, winds, relative humidity
 - Surface and sea-level data
 - Multiple time periods needed
 - First time for initial conditions
 - Later times for lateral boundary conditions

REAL program

- Interpolate METGRID data vertically to model levels
 - Pressure-level data for atmosphere
 - Soil-level (below-ground) data for land-surface model
 - Balance initial conditions hydrostatically
 - Create lateral boundary file
- IDEAL program
 - Alternative to real-data to initialize WRF with 2d and 3d idealized cases
- WRF model runs with initial conditions from above programs

Key features:

- Fully compressible, non-hydrostatic (with hydrostatic option)
- Mass-based terrain following coordinate, $\boldsymbol{\eta}$

$$\eta = \frac{\pi - \pi_t}{\mu}, \qquad \mu = \pi_s - \pi_t$$

where $\ \pi$ is hydrostatic pressure, μ is column mass

2008 Summer School on Geophysical Turbulence

• Arakawa C-grid staggering

U

U

Key features:

- 3rd-order Runge-Kutta time integration scheme
- High-order advection scheme
- Scalar-conserving (positive definite option)
- Complete Coriolis, curvature and mapping terms
- Two-way and one-way nesting

Flux-Form Equations in Mass Coordinates

Hydrostatic pressure coordinate:

$$\eta = \pi - \pi_t \underline{\gamma} \mu, \qquad \mu = \pi_s - \pi_t$$

Conservative variabl

Inviscid, 2-D equations without rotation:

Tables:
$$U = \mu u$$
, $W = \mu w$, $\Theta = \mu \theta$, $\Omega = \mu \eta$

$$\frac{\partial U}{\partial t} + \mu \alpha \frac{\partial p}{\partial x} + \frac{\partial p}{\partial \eta} \frac{\partial \phi}{\partial x} = -\frac{\partial U u}{\partial x} - \frac{\partial \Omega u}{\partial \eta}$$

$$\frac{\partial W}{\partial t} + g \left(\mu - \frac{\partial p}{\partial \eta} \right) = -\frac{\partial U w}{\partial x} - \frac{\partial \Omega w}{\partial \eta}$$

$$\frac{\partial \Theta}{\partial t} + \frac{\partial U \theta}{\partial x} + \frac{\partial \Omega \theta}{\partial \eta} = \mu Q$$

$$\frac{\partial \mu}{\partial t} + \frac{\partial U}{\partial x} + \frac{\partial \Omega}{\partial \eta} = 0$$

$$\frac{d\phi}{dt} = gw, \qquad \frac{\partial \phi}{\partial \eta} = -\mu \alpha, \qquad p = \left(\frac{R\theta}{p_0 \alpha}\right)^{\gamma}$$
2008 Summer School on

Time-Split Leapfrog and Runge-Kutta Integration Schemes

ARW Dynamics

Key features:

- Fully compressible, non-hydrostatic (with hydrostatic option)
- Mass-based terrain following coordinate, $\boldsymbol{\eta}$

2008 Summer School on Geophysical Turbulence

$$\eta = \frac{\pi - \pi_t}{\mu}, \qquad \mu = \pi_s - \pi_t$$

where π is hydrostatic pressure, μ is column mass

Arakawa C-grid staggering

Key features:

- Choices of lateral boundary conditions suitable for real-data and idealized simulations
 - Specified, Periodic, Open, Symmetric, Nested
- Full physics options to represent atmospheric radiation, surface and boundary layer, and cloud and precipitation processes
- Grid-nudging and obs-nudging (FDDA)

ARW Physics Options

- Turbulence/Diffusion
 - Constant K, 3d TKE, 3d Smagorinsky, 2d Smagorinsky
- Radiation
 - RRTM longwave, Goddard shortwave, Dudhia shortwave, CAM radiation, GFDL radiation
- Surface-layer/PBL/vertical mixing
 - Yonsei University (YSU), MRF, Mellor-Yamada-Janjic

ARW Physics Options

Land Surface

- Noah, RUC, 5-layer thermal soil
- Water can be updated only through reading SST during run
- Cumulus Parameterization
 - Kain-Fritsch, Betts-Miller-Janjic, Grell-Devenyi ensemble
- Microphysics
 - Kessler, Lin et al., Ferrier, Thompson et al., WSM (Hong, Dudhia and Chen) schemes

Sub-grid Turbulence Physics in NWP

- In NWP horizontal grid size >> vertical grid size (especially in boundary layer), therefore
 - Vertical mixing is done by a 1-d PBL scheme
 - Horizontal mixing is done by an independent horizontal diffusion

Role of PBL schemes in NWP

- PBL scheme receives surface fluxes of heat and moisture from land-surface model, and surface stress from surface-layer scheme
- Mixes heat, moisture and momentum in the atmospheric column providing rates of change for these quantities back to the NWP model
- Includes vertical diffusion in free atmosphere
- Schemes are mostly distinguished by various treatments of the unstable boundary layer
- Two popular schemes in WRF: YSU and MYJ

Geophysical Turbulence

YSU PBL

- Yonsei University PBL scheme (Hong, Noh and Dudhia 2006)
- Parabolic non-local-K mixing in dry convective boundary layer
- Troen-Mahrt countergradient term (non-local flux)
- Depth of PBL determined from thermal profile
- Explicit treatment of entrainment
- Vertical diffusion depends on Ri in free atmosphere
- New stable surface BL mixing using bulk Ri

MYJ PBL

Mellor-Yamada-Janjic (Eta/NMM) PBL

- 1.5-order, level 2.5, TKE prediction
- Local TKE-based vertical mixing in boundary layer and free atmosphere
- TKE and diagnostic vertical mixing length scale provide K coefficient
- TKE may be advected or not

Horizontal Diffusion in NWP

- Separated from vertical diffusion
- Depends on horizontal gradients of wind (2d Smagorinsky deformation method)
- May also depend on TKE (NMM core)
- May also add numerical smoothing (NMM and MM5)

Other Filters and Dampers

- NWP models need to control energy build-up at shortest resolved scales
 - Filters and high-order smoothers may be used for this
- Also need to prevent noise due to unrealistic reflection at model top
 - Upper level dampers or radiative conditions may be used at the top

Applications of Regional Models

- Regional Climate
- NWP

Regional Climate Modeling

- For regional climate studies, a model's performance needs to be evaluated in the same way as global climate models
- This includes long-term radiative and surface statistical comparison with observations
- Typical runs are months to years in length
- Resolution is typically in the 10-50 km gridsize range
- The Nested Regional Climate Model is a WRF Version developed for such studies

Nested Regional Climate Model

WRFV2.1

Physics:

- CAM radiation: (30min calls, 6 hr LW emiss/abs calls)
- WSM-6 microphysics
- Noah LSM
- YSU boundary layer
- Kain-Fritsch convection (36 and 12 km domains)

Code modifications:

- Periodic lateral boundary conditions in East-West.
- Time-varying lower boundary condition: SST and Vegetation Fraction.
- Wide buffer zone of 10 grid points using a combined linear-exponential relaxation for North-South boundaries.
- Expanded diagnostic outputs including the ISCCP simulator and accumulated fluxes

Tropical Channel Simulations

Forcing Data:

- NCEP-NCAR reanalyses at north and south boundaries (6 hourly at 2.5°)
- Periodic lateral boundary conditions East-West.
- Lower boundary conditions: AMIP SST (0.5 degree) and interpolated monthly vegetation fraction (0.144 degree).

Vertical Levels:

- 35 sigma levels for all domains (5 in the lowest km).
- Terrain following coordinate.

Model Outputs:

- 3-hourly meteorological fields.
- Hourly accumulated surface and TOA fluxes.

Analysis and Evaluation:

- Climate diagnostics (Julie Caron and Jim Hack).
- Tropical cyclone statistics (Greg Holland).

Outgoing Longwave Radiation

QuickTime[™] and a BMP decompressor are needed to see this picture.

Regional Climate Applications

- Regional climate models may be driven by global climate models for future scenarios (downscaling)
- Emphasis on surface temperature and moisture means turbulence in the boundary layer is central to predictions

Geophysical Turbulence

- Use of models for wind climate mapping (wind energy applications)
- Regional climate models also used for hydrology studies (water resource applications) 2008 Summer School on

Air Quality Applications

- Long-term regional model outputs provide input to air-quality/chemistry models
- Input consists of winds and vertical mixing coefficients
- Vertical mixing is important for correct prediction of tracer concentrations near the surface (day-time and nocturnal mixing)

- Regional NWP models typically are run for a few days
- Boundary conditions come from other models
- For real-time forecasts, boundary conditions come from earlier larger-domain forecasts or ultimately global forecasts (which don't require boundary conditions) run at operational centers (NCEP global forecast data is freely available in real time on the Web)

- Time-to-solution is a critical factor in real-time forecasts
- Typically forecasts may be run up to 4 times per day, so each forecast should take only a couple of hours of wall-clock time
- Depending on the region to be covered, computing power constrains the grid size
- For a given region, cost goes as inverse cube of grid length (assuming no change in vertical levels) because time step is approximately proportional to grid length

- U.S. operational regional model (WRF-NMM) is currently on a 12 km grid
- Other smaller countries (e.g., U.K., Germany, Japan, South Korea) can use finer grid sizes to cover their areas of interest
- Real-time forecast models currently have grid sizes
 down to a few kilometers
 - Starting to resolve individual large thunderstorms (with no cumulus parameterization needed)
 - But, not yet at the LES scale for such models so PBL parameterizations still needed

- Deterministic versus Ensemble forecasts
 - Is it better to use given computing resources for
 - One high-resolution (deterministic) run, or
 - Multiple lower-resolution runs (ensemble)
 - Now reaching scales where resolution improvements do not necessarily improve forecasts
 - Added detail (e.g in rainfall) is not necessarily correctly located
 - Verification of detailed rainfall forecasts is a key problem
 - However, uncertainties in initial conditions are known to exist and to impact forecasts
 - Ensembles give an opportunity to explore the range of uncertainty in forecasts, can be used in data assimilation, and can provide probabilistic results

Real-time Forecasting at NCAR

- Twice-Daily US domains (20 and 30/10 km)
 - Run on MMM Division computers
 - Posted on Web
- Special Programs
 - Spring Programs (2003-2008)
 - 4 km daily over central US (3 km in 2008)
 - Atlantic Hurricanes (2004-2007)
 - 12 km and 4km moving nest for hurricane cases (1.33 km nest in 2007)

Spring Programs

- Purpose is to evaluate benefits of convectionresolving real-time simulations to forecasters in an operational situation
- Single hi-res domain run daily from 00z for 36 hours to gauge next day's convective potential
- Sometimes (as with BAMEX 2003) done in conjunction with field program

WRF ARW model, 2003 BAMEX forecasts

BAMEX Goal: Study the lifecycles of mesoscale convective vortices and bow echoes in and around the St. Louis MO area

Field program conducted 20 May – 6 July 2003
Convective-scale Forecasting (4km)

Spring Program Results

- First-generation convection often is well forecast up to 24 hours
- Sometimes next generation is missed or over-forecast
- Forecasters find these products useful
- Give a good idea of convective mode (supercells vs squall lines)

Study of Resolved Turbulence in NWP

- WRF Kinetic energy spectra study by Skamarock (2005)
 - How well does the model reproduce observed spectrum?
 - How does spectrum change with model resolution?
 - How does spectrum vary with meteorological situation?
 - How does spectrum develop in model?
 - How do different models do?

Kinetic Energy Spectra

Nastrom and Gage (1985) Spectra computed from GASP observations (commercial aircraft)

Lindborg (1999) functional fit from MOZAIC observations (aircraft)

Geophysical Turbulence

Spectra for WRF-ARW BAMEX Forecasts, 5 May – 14 July 2003

Average over approx. 4-9 km height, on model surfaces.

4 km WRF-ARW: 12 - 36 h forecast avg.

Spectra for WRF-ARW BAMEX Forecasts, 1 June – 3 June 2003

Average over approx. 4-9 km height, on model surfaces.

4, 10 and 22 km WRF-ARW: 12 - 36 h forecast avg.

WRF-ARW BAMEX Forecasts, 1 – 3 June 2003 Effective Resolution for the 10 km Forecast

WRF-ARW BAMEX Forecasts, 1 – 3 June 2003, Effective Resolutions for 22 and 4 km Forecasts

From Skamarock 2005

Spectra for WRF-ARW Forecasts, Ocean and Continental Cases

Average over approx. 4-9 km height, on model surfaces.

10 km WRF-ARW:12 - 36 h forecast avg.

WRF-ARW BAMEX Forecasts 10 km Forecast Spectra Evolution (model spin-up)

From Skamarock 2005

Geophysical Turbulence

MM5, COAMPS and WRF-ARW Spectra

MM5 AMPS /Antarctica 20 Sept 2003, dx = 10 km

COAMPS BAMEX 2 June 2003, dx = 10 km

WRF-ARW BAMEX 1 – 3 June 2003, dx = 10 km

Spectra Results

- ARW captures -3 to -5/3 transition at scales of a few hundred km
- ARW model spectrum resolution is effectively 7 grid lengths (damped below that)
- Different models have different effective resolutions for a given grid size
- Finer scales take ~6 hours to fully develop from coarse analyses

Hurricane Season Forecasts

- All hurricane cases have been run in real-time with a 4 km moving nest since 2004
- This includes the four Florida storms in 2004 and the major storms Katrina, Rita and Wilma in 2005

Hurricane Katrina Simulation (4km)

Hurricane Forecast Tests

- Statistical evaluation against operational models in 2005 showed WRF had better skill in track and intensity beyond 3 days (similar skill before that) (study by Mark DeMaria)
- Many re-runs have shown sensitivities to surface flux treatment (Cd and Ck), and grid size (example is Hurricane Dean of 2007)
- Also investigating 1d ocean-mixed layer feedback

Dean track forecasts

Hurricane Dean (2007)

Note that forecasts underestimate maximum windspeed

Hurricane Dean (2007)

Forecasts also underestimate pressure drop

Surface Fluxes

• Heat, moisture and momentum $H = \rho c_p u_* \theta_*$ $E = \rho u_* q_*$ $\tau = \rho u_* u_*$

$$u_{*} = \frac{kV_{r}}{\ln(z_{r}/z_{0}) - \psi_{m}} \qquad \theta_{*} = \frac{k\Delta\theta}{\ln(z_{r}/z_{0h}) - \psi_{h}} \qquad q_{*} = \frac{k\Delta q}{\ln(z_{r}/z_{0q}) - \psi_{h}}$$

Subscript *r* is reference level (lowest model level, or 2 m or 10 m) z_0 are the roughness lengths 2008 Summer School on Geophysical Turbulence

Roughness Lengths

- Roughness lengths are a measure of the "initial" length scale of surface eddies, and generally differ for velocity and scalars
- In 2006 AHW $z_{0h}=z_{0q}$ are calculated based on Carlson-Boland (~10⁻⁴ m for water surfaces, weak variation with wind speed)
- *z*₀ for momentum is a function of wind speed following tank experiments of Donelan (this replaces the Charnock relation in WRF). This represents the effect of wave heights in a simple way.

Drag Coefficient

• C_{D10} is the 10 m drag coefficient, defined such that

 $\tau \equiv \rho C_{D10} V_{10}^2$

It is related to the roughness length by (in neutral conditions)

$$C_{D10} = \left(\frac{k}{\ln(z_{10} / z_0)}\right)^2$$

Enthalpy Exchange Coefficient

• C_{E10} is the 10 m moisture exchange coefficient, defined such that

 $E \equiv \rho C_{E10} V_{10} \Delta q$

It is related to the roughness lengths (assuming neutral conditions) by

$$C_{E10} = \left(\frac{k}{\ln(z_{10} / z_0)}\right) \left(\frac{k}{\ln(z_{10} / z_{0q})}\right)$$

Often it is assumed that $C_H = C_E = C_k$ where C_k is the enthalpy exchange coefficient. However, since 90% of the enthalpy flux is latent heat, the coefficient for sensible heat (C_H) matters less than that for moisture (C_E)

C_D and C_k

- From the works of Emanuel (1986), Braun and Tao (2001) and others the ratio of C_k to C_D is an important factor in hurricane intensity
- Observations give some idea of how these coefficients vary with wind speed but generally have not been made for hurricane intensity

Black et al. (2006)

27th AMS

Hurricane

conference

Modification to C_k in AHW

- Commonly z_{0q} is taken as a constant for all wind speeds
- However for winds greater than 25 m/s there is justification for increasing this to allow for sea-spray effects that may enhance the eddy length scales
- We modify z_{0q} in AHW to increase at wind speeds > ~25 m/s
- This impacts C_k as shown next

Modification to C_k in AHW

 C_d - red Old CB - green New C_k - blue dashed Z_{0q} const - blue solid

QuickTime™ and a BMP decompressor are needed to see this picture.

Hurricane Physics

- Results here and elsewhere demonstrate sensitivity of simulated intensity to surface flux formulation
- Also need to add dissipative heating from friction (Bister and Emanuel)
- Other aspects of physics also affect hurricane structure (e.g. microphysics)

Towards LES Modeling

- LES scales (~100 m grids or less)
- NWP not yet at LES scales, but maybe in a decade or two it will be
- Need to evaluate how LES does for challenging situations like hurricanes
- Study by Yongsheng Chen et al. is an example of an early attempt using an idealized hurricane

Large Eddy Simulations of an Idealized Hurricane Yongsheng Chen, Rich Rotunno, Wei Wang, Christopher Davis, Jimy Dudhia, Greg Holland MMM/NCAR

37km

Motivation

- 1. Intensity sensitivity to model resolution
- 2. Direct computation of effects of turbulence

Regimes of Numerical Modeling (Wyngaard 2004)

Model Setup

 $6075 \text{km} (\Delta = 15 \text{km})$

Idealized TC

f-plane zero env wind fixed SST

WRF Model Physics WSM3 simple ice No radiation Relax to initial temp. Cd (Donelan) Ck (Carlson-Boland) Ck/Cd ~ 0.65 YSU PBL ($\Delta \ge 1.67 km$) LES PBL ($\Delta \le 1.67 km$)

Intensity Evolution

2008 Summer School on Geophysical Turbulence

From Y. Chen et al. 2008

LES

From Y. Chen et al. 2008
1-min Averaged Surface Wind

instantaneous

1-min average

37km

2008 Summer School on Geophysical Turbulence

From Y. Chen et al. 2008

Eddy Kinetic Energy Spectra

LES

From Y. Chen et al. 2008

LES Hurricane Tests

- At 62 meter grid, eddies become resolved representing individual gusts
- Issues remain
 - Near ground LES schemes lack proper treatment of reduced eddy sizes, since much kinetic energy should remain in subgrid-scale turbulence there
 - Therefore, never possible to fully resolve turbulence near surface

2008 Summer School on Geophysical Turbulence

Summary and Conclusions

- Regional modeling and NWP rely on turbulence parameterizations
 - PBL schemes and vertical diffusion
 - Horizontal diffusion
 - Surface eddy transports
 - (also) Gravity-wave drag
- Forecast skill depends on methods used
- Better parameterizations for these processes are being developed in ongoing research