Assessing California's Offshore Wind Energy Potential

Horns Rev Wind Farm, Denmark Source: http://www.hornsrev.dk Michael Dvorak Mark Jacobson Cristina Archer

Stanford University

Atmosphere/Energy Program

April 3, 2008

Overview

- Why move wind power offshore?
- Limits/advantages to offshore development
- Existing and proposed projects
- Turbine support technologies
- CA offshore wind assessment methodology

Overview (cont.)

- Shallow water areas in CA
- Modeled wind resource
- Validation of modeling results
- CA wind energy resource estimate
- Example CA offshore wind park
- Public acceptance of a CA wind park

Why Move Wind Energy Offshore?

- Lower surface roughness over water
- "Reduced" visual impact
- Wildlife impact much lower
- Fewer limitations on transmission
- Shipping restrictions greatly reduced
- Possible to install larger turbines, higher

Dvorak et al.

Limits of Offshore Development

- Tough installation of turbines
- More \$\$\$/energy (about 2-3 times more per kWh)
- Increased maintenance costs
- Deep water tower support technology not mature
- Underwater transmission more \$\$\$
- NIMBY issues
- Unprecedented in the US
 - regulatory uncertainty
 - affected communities

April 3, 2008

So why bother? Transmission limitations + Expensive electricity rates + Zero fuel risk + Majority of populations being on coast + **Global** warming

Render offshore wind a viable energy resource

Existing Offshore Wind Turbines

- About 1,100 MW installed by 2007 (EWEA)
 - Compared to 94,000 MW total (GWEC)
 - Mostly in the North and Baltic Sea

Dvorak et al.

Proposed N. American Projects

NOTE: Zero installed capacity!!!

Map credit: OffshoreWind.net

Proposed – Nantucket Sound

- Developer Cape Wind
 - 420 MW
 - 130 turbines
 - 2 rounds of EIS (under the Corps and MMS)
 - Draft EIS released by MMS in January

Map source: http://capewind.org

The nation's first proposed offshore wind-energy project cleared its most formidable hurdle yesterday as the US Minerals Management Service declared that the wind farm off Cape Cod would have little lasting impact on wildlife, navigation, and tourism. -Boston Globe, Jan 15, 2008

April 3, 2008

Proposed - Delaware

- Developer Bluewater Wind
 - 450 MW capacity
 - 150, 3 MW turbines
 - closest turbine 11.9 miles (19 km)
 - competitive bid process
 - 10.6 cents/kWh + 0.6 cents/kWh capacity credit

Map source: Bluewater Wind Dvorak et al.

Wind Turbine Tower Support Technology

- Offshore conditions harsh
 - Need to design for large waves, hurricanes, and even earthquakes
 - Only shallow waters currently (45 m depth max)
- Tower support types
 - Gravity Base
 - Monopile
 - Multileg (suction piles)
 - Floating towers (lots of variations)

Gravity Base Structures

- Extremely shallow water (~ 5 meters)
 - Large, flat base supports turbine load
- Middelgrunden, Denmark
 - 2-6 meters
 - 40 MW, 2MW
 turbines

Source: http://offshorewindenergy.org

Monopile Towers

- Some potential for CA
 - up to 20 meters
 depth
- Pounded into sea floor
- Horns Rev,
 Denmark
 - 80, 2 MW Vestas turbines
 - 160 MW capacity

Source: http://offshorewindenergy.org

Multileg Support Structure

- Use suction piles (water jackets) to anchor into sea floor
- Beatrice, Scotland
 - 45 meters depth
 - 2 test platforms installed
 - Using Repower 5M
 5MW turbines

Source: http://offshorewindenergy.org

Floating Support Structure

Image source: Sclavounos/MIT, NREL

Out to 200 meters in 15 years?

Future of Turbine Supports?

- California/West Coast has unique constraints
 - foremost, water is deep
 - BUT seismic loads are most significant

- bottom founded will be more expensive
- Floating tension leg and spar design might end up being cheaper
- Thanks to Chris Barry, USCG for this insight

Challenges of Offshore Installation

- Requires specialized boats
- Rough weather and tides can cause delays
- First US project will have to build these boats
- Merchant Marine Act of 1920 a big problem!

Photo credit: BBC

Photo credit: Talisman Energy

Overview of California's Offshore Wind Energy Assessment

- Evaluated the bathymetry (water depth) for tech and economic feasibility
- Modeled the winds using a mesoscale weather model (8 seasonal months over 2 years)
- Checked the accuracy of the model using offshore buoy wind data
- Picked a turbine, to calculate energy and power numbers

Bathymetry Data

- Nat. Geophys. Data Center 3-arc second Coastal Relief (\sim 30 m)
- Similar breaks to Dhanju, et al.
 - breaks at 20 m for monopiles
 - 20-50 m for multileg support
 - 50-200 m for floating platforms

Dvorak et al.

Northern CA

- Harsh weather and terrain keep populations low
- Small amount of transmission near coast
- Site of potential wind farm (later)

San Francisco Bay Area

- Bay itself is shallow
- Transmission access near Bay inlet
- High urban electricity demand

Southern California

- Lots of grid access
- Existing oil and gas may quell NIMBY issues
- Lots of urban electric load

Modeled Winds

- Penn State/National Center for Atmos. Research Mesoscale Model V5 (MM5)
- 2 domains
 - 5 km resolution over all CA
 - 1.67 km resolution
 over Bay Area
- Restarted every 7 days

Modeled 2005/2006 80 m Wind

- Winds only shown out to 200 m depth
- Combination of Jan, Apr, Jul, Oct 2005 and 2006 results
- Transition from blue to pink is the 7.5 m/s cutoff

Model Validation

- NOAA National Data Buoy Center (5 m height)
- Used 6 offshore buoys in the 0-200 m depth zone
- Compared all available buoy data to MM5 10 m winds (including 2006 JJA)
- Should meet the following criteria to show "skill" (E is the RMSE) (2002, Pielke, R.A.)

Image source: NOAA NDBC

Error Results – Domain 1

Domain 1 (5.00 km resolution)											
year	2005				2006						Wt
month	Jan	Apr	Jul	Oct	Jan	Apr	Jun	Jul	Aug	Oct	avg
avg mm5 (m/s)	4.94	6.81	6.91	6.04	5.30	6.56	7.67	6.84	6.27	4.88	6.21
avg buoy (m/s)	6.60	7.15	5.63	6.04	6.18	6.81	7.05	6.25	5.69	4.98	6.22
stddev mm5 (m/s)	3.02	3.37	3.14	2.82	2.99	2.91	3.34	2.66	2.16	2.49	2.88
stddev buoy (m/s)	3.38	3.84	3.49	3.04	3.18	3.41	3.94	3.37	3.14	2.95	3.36
RMSE (m/s)	2.98	1.99	2.59	2.19	2.29	2.21	2.43	2.52	2.35	2.28	2.38
bias (m/s)	-1.65	-0.34	1.28	0.00	-0.89	-0.25	0.62	0.59	0.58	-0.10	-0.01
NGE	43%	31%	67%	44%	37%	37%	48%	58%	59%	53%	48%
NB	-16%	5%	54%	17%	-7%	10%	31%	36%	41%	20%	19%
count	3575	3458	3424	4224	2848	3688	3318	3463	3411	3953	35362

Error Results – Domain 2

Domain 2 (1.67 km resolution)											
year	2005	,			2006						Wt
month	Jan	Apr	Jul	Oct	Jan	Apr	Jun	Jul	Aug	Oct	avg
avg mm5 (m/s)	5.30	7.44	6.20	5.97	5.35	6.88	7.32	6.14	5.49	4.24	6.03
avg buoy (m/s)	6.99	7.58	5.50	6.49	6.16	7.01	6.81	6.55	5.65	4.46	6.33
stddev mm5 (m/s)	2.92	3.60	3.00	2.71	2.94	3.02	3.71	2.83	2.37	2.42	2.95
stddev buoy (m/s)	3.23	3.85	3.32	2.96	3.08	3.38	3.77	3.23	2.95	2.63	3.24
RMSE (m/s)	3.16	1.96	1.89	2.05	2.31	2.19	2.18	1.97	1.95	2.03	2.17
bias (m/s)	-1.70	-0.14	0.71	-0.52	-0.81	-0.13	0.51	-0.41	-0.17	-0.22	-0.30
NGE	41%	28%	45%	32%	37%	33%	40%	34%	39%	49%	38%
NB	-13%	7%	32%	2%	-5%	10%	21%	5%	14%	12%	8%
count	2166	2083	2079	2160	2128	2105	2000	2140	2104	1973	20938

Validation of MM5 Winds with Offshore Buoys

CA Offshore Energy Estimation Method

- REpower 5M turbines
 - 5.0 MW rated power
 - 126.0 m diameter swept area
 - 4D x 7D spacing
 - Area req'd per turbine: 0.44 km²

- Assumed a 33% exclusion zone
- Used 7.0 and 7.5 m/s cutoff
- Summed all areas
 <=20 m, 20-50 m
 and 50-200 m
- Calculated number of turbines per area

Capacity Factor Calculation

$$CF=0.087xV_{m} - \frac{Pr(kw)}{D^{2}(m)}$$

- Equation^{*} assumes Rayleigh distribution of winds.
- Within 1% accurate energy output for Repower 5M turbine using power curve.

*Masters, G.M. (2004) *Renewable and efficient electric power systems.* ** Hoste, G., Jacobson, M.Z., Archer, C.L. (2007) *unpublished.*

Usable Surface Area and Average Wind Speeds

ocean depth	cutoff speed (m/s)	Northern CA area (km ²)	spd (m/s)	SF Bay Ar area (km ²)	ea (offshore) spd (m/s)	Southern C area (km ²) s	A pd (m/s)	total area (km²)
0-20 m	≥7.0 m/s	126	7.72	14	7.15	139	7.65	294
	≥7.5 m/s	67	8.05	0	N/A	106	7.76	181
20 – 50 m	≥7.0 m/s	641	7.66	141	7.20	396	7.60	1193
	≥7.5 m/s	391	7.93	8	7.52	215	7.84	629
50 – 200 m	≥7.0 m/s	3832	8.09	3829	7.67	2886	7.57	10563
	≥7.5 m/s	3298	8.22	2491	7.90	1476	7.88	7281

•Average wind speed calculated based on bathymetry depth class

•Northern California has the best shallow water winds

•Other areas, better winds as depth increases

Turbine Nameplate Capacity and Annual Energy Output

ocean depth	cutoff speed (m/s)	Nameplate Northern Calif.	Capacity (M SF Bay Area	W) Southern Calif.	total
0-20 m	≥7.0 m/s	950) 106	5 1,048	2,103
	≥7.5 m/s	505	5 C	799	1,304
20 – 50 m	≥7.0 m/s	4,83	1 1,063	2,984	8,878
	≥7.5 m/s	2,947	7 60	1,620	4,627
50 – 200 m	≥7.0 m/s	28,878	3 28,856	21,749	79,483
	≥7.5 m/s	24,854	4 18,772	11,123	54,750

Annual Energy Output (TWh)								
ocean depth	cutoff	Northern	SF Bay	Southern	total	avg power		
	speed (m/s)	Calif.	Area	Calif.	(TWh)	(GW)		
0-20 m	≥7.0 m/s	2.97	0.28	3.22	6.5	0.74		
	≥7.5 m/s	1.7	0	2.52	4.2	0.48		
20 – 50 m	≥7.0 m/s	14.87	2.9	9.05	26.8	3.06		
	≥7.5 m/s	9.68	0.18	5.21	15.1	1.72		
50 – 200 m	≥7.0 m/s	98.38	89.07	65.47	252.9	28.87		
	≥7.5 m/s	87.13	61.23	36.11	184.5	21.06		

Proposed Cape Mendocino Wind Park

April 3, 2008

Peak Wind Power Output?

- Group 2005 and 2006 modeled winds speeds by hour (average)
- Steady breeze persists throughout the summers months

Public Acceptance in N. California?

- Small research project over holiday break
- Placed a replica turbine in the waters off Eureka
- Evaluated public response

No complaints about the aesthetics!!!*

*Results not scientifically based.

Public Acceptance in N. California?

Conclusions

- Between 63% and 86% of CA's electricity needs could be provided with offshore wind energy alone.
- Despite the steep bathymetry off the CA coast, significant development potential exists for offshore wind
- Northern CA has the best 80 m wind resource but has the least transmission capacity

Conclusions (cont.)

- Northern CA's resource could be developed today, using existing turbine support technology
- The San Francisco Bay Area will require the development of floating turbine support structures
- Southern CA's wind resource is significantly reduced during the summer months

Thank You Questions?

