Reduced Modeling of the Magnetorotational Instability

Ben Jamroz

Advisor: Keith Julien Department of Applied Mathematics University of Colorado at Boulder

Summer School Geophysical Turbulence July 15, 2008

< < p>< < p>

Outline

1 Introduction

- Motivation and Background
- Hydrodynamics
- MRI
- 2 Derivation of Reduced Model
 - Formulation
 - Shearing Sheet
 - Reduced Model

3 Modeling the Reduced Equations

- Large Elsasser Regime
- $\mathcal{O}(1)$ Elsasser Regime

Motivation and Background Hydrodynamics MRI

Accretion is a Fundamental Astrophysical Process

Accretion is the process by which a massive object collects surrounding matter by gravitation. Accretion disks are observed in many astrophysical processes (binary star systems, center of galaxies).

Keplerian balance in mom. eqn.

•
$$\Omega^2 = GM/r^3$$

Angular momentum transport needed!

Motivation and Background Hydrodynamics MRI

Geometry

- Astrophysical Disks: Differential Rotation
 - Keplerian balance: $\Omega^2 = \frac{GM}{r^3}$
- Laboratory: Taylor-Couette Geometry
 - Imposed $\Omega(r_1), \Omega(r_2)$
- Shearing Sheet Simplified Geometry

Motivation and Background Hydrodynamics MRI

Keplerian Disks are Hydrodynamically Stable

- Linear stability for the astrophysical regime
 - Rayleigh stable $\frac{d}{dr}(r^2\Omega) < 0$
- Finite amplitude disturbance can cause instability
- Turbulent mixing Does it produce the needed angular momentum transport?
 - ν_{turb} large ("eddy") viscosity
 - Experiments Hydrodynamic turbulence cannot transport angular momentum effectively in astrophysical disks (Ji et. al. Nature 2006)

イロト イポト イヨト イヨト

Motivation and Background Hydrodynamics MRI

Magnetorotational Instability

Shear instability in the presence of magnetic fields

- First discovered by Velikhov (1959) and Chandrasekhar (1960)
- Rediscovered by Balbus and Hawley (1991)
 - MRI generates the level of angular momentum transfer needed
- Operates in the Rayleigh stable regime $\frac{d}{dr}(r^2\Omega) < 0$
- Axisymmetric
- Linear instability

Introduction

Derivation of Reduced Model Modeling the Reduced Equations Summary Motivation and Background Hydrodynamics MRI

Magnetorotational Instability

- Balbus & Hawley's original simulation of the MRI
 - Contour plot of angular momentum perturbations (r, z)
- Transfer of angular momentum
- Large vertical gradient of the "fingering instability" motivates scalings

Introduction

Derivation of Reduced Model Modeling the Reduced Equations Summary Motivation and Background Hydrodynamics MRI

Previous Work

- Balbus and Hawley (1991)
 - Efficient transfer of angular momentum
 - Didn't include dissipative processes viscous or ohmic
 - No Saturation
- Sano et. al. (1998)
 - First to show saturation of this instability
 - Compressible flow
 - Resistivity and viscosity included
 - Critical parameter, Elsasser number $\Lambda = v_A^2/\Omega\eta$
 - $\Lambda > 1$ Saturation
 - $\Lambda < 1$ No saturation
- Goodman and Xu (1994)
 - Nonaxisymmetric perturbations can saturate
- Lathrop group
 - First experimental observation of MRI (Sisan et. al. 2004)

Formulation Shearing Sheet Reduced Model

Full Equations

Conservation of Momentum

$$\frac{D\boldsymbol{u}}{Dt} + 2\boldsymbol{\Omega} \times \boldsymbol{u} = -\frac{1}{\rho} \nabla \rho - \frac{1}{2\mu_0 \rho} \nabla |\boldsymbol{B}|^2 + \frac{1}{\mu_0 \rho} \boldsymbol{B} \cdot \nabla \boldsymbol{B} + \nu \nabla^2 \boldsymbol{u},$$

Induction Equation

$$\frac{D\boldsymbol{B}}{Dt} = \boldsymbol{B} \cdot \nabla \boldsymbol{u} + \eta \nabla^2 \boldsymbol{B}$$

Incompressibility, Solenoidal Condition

$$abla \cdot \boldsymbol{u} = 0, \nabla \cdot \boldsymbol{B} = 0$$

(日) (同) (日) (日)

э

Formulation Shearing Sheet Reduced Model

Reduced Modeling

Astrophysical Regime - Large Parameters

• $\nu \ll 1, \eta \ll 1$

•
$$R_e = \frac{UL}{\nu}, R_m = \frac{UL}{\eta} \gg 1$$

• Several different time scales:

- Rotational time scale Ω^{-1}
- Alfven time scale L/v_A^2
- Diffusive time scale $L^2/
 u, L^2/\eta$
- $\Omega^{-1} \ll L/v_A \ll L^2/\nu, L^2/\eta$
- To reach saturation we must integrate far in time

< < p>< < p>

Formulation Shearing Sheet Reduced Model

Shearing Sheet

- Shearing sheet approximation at r^* with local angular velocity $\Omega^*(r^*)\hat{z}$
- Local Cartesian coordinates $(r, \phi, z) \sim (x, y, z)$
- Straight channel:
 - $-L^*/2 \le x^* \le L^*/2, -\infty < y^* < \infty, -\infty < z^* < \infty$
- Linear Shear: $U_0^* = (0, \sigma^* x^*, 0)$
- Constant Background Magnetic field: $B_0^* = (0, B_{tor}^*, B_{pol}^*)$

Formulation Shearing Sheet Reduced Model

Formulation of the Model Problem

- Non-dimensionalize
- $v_A = B^*_{pol}/\sqrt{\mu_0 \rho^*} U^*$, Ω, ν, η are the dimensionless Alfven speed, rotation rate, kinematic viscosity and ohmic diffusivity
- $\nabla \cdot {m u} = 0$, $\nabla \cdot {m b} = 0$, axisymmetry allow the use of a stream function and flux function

•
$$\boldsymbol{u} = (-\psi_z, v, \psi_x), \boldsymbol{b} = (-\phi_z, b, \phi_x)$$

Formulation Shearing Sheet Reduced Model

Nondimensionalized Equations

Axisymmetric perturbations of the form $\boldsymbol{u} = (u, v, w) = (-\psi_z, v, \psi_x), \ \boldsymbol{b} = (-\phi_z, b, \phi_x)$ give the following equations

$$\begin{aligned} \nabla^2 \psi_t + 2\Omega v_z + J(\psi, \nabla^2 \psi) &= v_A^2 \nabla^2 \phi_z + v_A^2 J(\phi, \nabla^2 \phi) + \nu \nabla^4 \psi. \\ v_t - (2\Omega + \sigma) \psi_z + J(\psi, v) &= v_A^2 b_z + v_A^2 J(\phi, b) + \nu \nabla^2 v, \\ \phi_t + J(\psi, \phi) &= \psi_z + \eta \nabla^2 \phi, \\ b_t + J(\psi, b) &= v_z - \sigma \phi_z + J(\phi, v) + \eta \nabla^2 b \end{aligned}$$

Here, $J(f,g) = f_x g_z - f_z g_x$.

(日) (同) (三) (三)

Formulation Shearing Sheet Reduced Model

Scaling Assumptions

- Traditional approach to nonlinear saturation: weakly nonlinear theory with $(\Lambda-\Lambda_c)/\Lambda_c \ll 1.$
 - Our approach: strongly nonlinear theory
- Shear is the dominant source of the energy for the MRI
 - rapid rotation, strong shear: $(\Omega,\sigma) = \delta^{-1}(\hat{\Omega},\hat{\sigma})$
- MRI itself requires the presence of a (weaker) vertical magnetic field

• magnetic field: v_A
$$\sim$$
 1, v_A^* $\equiv B^*_{\it pol}/\sqrt{\mu_0
ho^*}U^*$

- Dissipative effects are weaker still but cannot be ignored since they are ultimately responsible for the saturation of the instability
 - weak dissipative processes: $(
 u,\eta)=\epsilon(\hat{
 u},\hat{\eta})$

• Take $\epsilon \sim \delta \ll 1, \Lambda = O(1)$ (Case A) or $\epsilon \ll \delta \ll 1, \Lambda \gg 1$ (Case B)

- $Rm = |\sigma^*|L^{*2}/\eta^*$, $Pm = \nu^*/\eta^*$, $S = v_A^*L^*/\eta^*$
- so $Rm \gg S \gg \max(1, Pm)$, while $\Lambda = O(1)$

Formulation Shearing Sheet Reduced Model

Multiple Scales Expansion

- Motivated by Balbus & Hawley
- Large wavenumber in z large variation
 - $\partial_z = \epsilon^{-1} \partial_z$
- Have large gradients in x direction
- Fast dynamic time scale, slow evolution to a statistically steady state
 - $\partial_t = \epsilon^{-1} \partial_t + \partial_T$
- Set ϵ by considering the size of our domain
 - Lz wavelength of fastest growing mode Linear Dispersion
 - $L_X \sim \epsilon^{-1} L_z$

(日) (同) (三) (三)

Formulation Shearing Sheet Reduced Model

Asymptotic Expansion

• To solve the scaled equations we expand every variable

$$\psi(x,X,z,t,T) = \sum_{i,j} \epsilon^{\frac{i}{2}} \delta^{\frac{j}{2}} \psi_{ij}(x,X,z,t,T) + \dots,$$

- Deduction: Leading order azimuthal fields v₀₀, b₀₀ represent large-scale adjustment to background shear and toroidal field due to MRI
- Separate all variables into their mean and fluctuating components

•
$$\psi_{ij}(x, X, z, t, T) = \overline{\psi}_{ij}(X, T) + \psi'_{ij}(x, X, z, t, T)$$

•
$$\overline{\psi}_{ij}(X, T) \equiv \lim_{\tau, V \to \infty} \frac{1}{\tau V} \int_{\tau, V} \psi_{ij}(x, X, z, t, T) dx dz dt$$

• We now collect terms at each order in the evolution equations

Image: A matrix and a matrix

Formulation Shearing Sheet Reduced Model

Reduced Fluctuating Equations

At
$$O(\epsilon^{\frac{-1}{2}}\delta^{\frac{-1}{2}})$$

 $\overline{\nabla}^{2}\psi_{00t}^{\prime} + 2\widehat{\Omega}v_{11z}^{\prime} + \left(\frac{\epsilon}{\delta}\right)^{\frac{1}{2}}J_{x}(\psi_{00}^{\prime},\overline{\nabla}^{2}\psi_{00}^{\prime}) = v_{A}^{2}\overline{\nabla}^{2}\phi_{00z}^{\prime} + v_{A}^{2}\left(\frac{\epsilon}{\delta}\right)^{\frac{1}{2}}J_{x}(\phi_{00}^{\prime},\overline{\nabla}^{2}\phi_{00}^{\prime}) + \left(\frac{\epsilon}{\delta}\right)\widehat{\nu}\overline{\nabla}^{4}\psi_{00}^{\prime},$
(1)

$$v_{11t}' - \left(2\widehat{\Omega} + \widehat{\sigma} + \partial_X \overline{v}_{00}\right) \partial_z \psi_{00}' + \left(\frac{\epsilon}{\delta}\right)^{\frac{1}{2}} J_x(\psi_{00}', v_{00}') =$$
(2)

$$v_{\mathcal{A}}^{2}\left(b_{11z}^{\prime}-\partial_{X}\overline{b}_{00}\phi_{00z}^{\prime}+\left(\frac{\epsilon}{\delta}\right)^{\frac{1}{2}}J_{x}\left(\phi_{00}^{\prime},b_{00}^{\prime}\right)\right)+\left(\frac{\epsilon}{\delta}\right)\widehat{\nu}\overline{\nabla}^{2}v_{11}^{\prime},$$

$$\phi_{00t}' + \left(\frac{\epsilon}{\delta}\right)^{\frac{1}{2}} J_{x}(\psi_{00}', \phi_{00}') = \psi_{00z}' + \left(\frac{\epsilon}{\delta}\right) \widehat{\eta} \overline{\nabla}^{2} \phi_{00}', \tag{3}$$

$$b'_{11t} - \partial_X \overline{b}_{00} \psi'_{00z} + \left(\frac{\epsilon}{\delta}\right)^{\frac{1}{2}} J_x(\psi'_{00}, b'_{11}) = v'_{11z} - (\widehat{\sigma} + \partial_X \overline{v}_{00}) \phi'_{00z} +$$
(4)

$$\left(\frac{\epsilon}{\delta}\right)^{\frac{1}{2}} J_{x}(\phi_{00}', v_{11}'), + \left(\frac{\epsilon}{\delta}\right) \widehat{\eta} \overline{\nabla}^{2} b_{11}'.$$

Formulation Shearing Sheet Reduced Model

Feedback onto the Shear

- For both sets of scalings ($\epsilon \ll \delta$ & $\epsilon \sim \delta$) there is feedback onto the imposed shear
- Readjustment of the local background state
 - $(\widehat{\sigma} + \partial_X \overline{v}_{00})$ terms
 - Tends towards solid body rotation, $|\widehat{\sigma} + \partial_X \overline{v}_{00}| < |\widehat{\sigma}|$
 - Angular momentum must have been transported
- At $\mathcal{O}(\epsilon\delta)$ we close this system and get relations for $\partial_X \overline{\nu}_{00}$ and $\partial_X \overline{b}_{00}$

$$\hat{\nu}\partial_X \overline{v}_{00} = -\overline{\psi_{00z}v_{11}} + v_A^2 \overline{\phi_{00z}b_{11}}$$

$$\hat{\eta}\partial_X \overline{b}_{00} = -\overline{\psi_{00z}b_{11}} + \overline{\phi_{00z}v_{11}}$$

• $\partial_X \overline{b}_{00}$ is the O(1) correction to the background toroidal field B_{tor}

Formulation Shearing Sheet Reduced Model

Single Mode Theory

• Goodman and Xu (1994) & Julien and Knobloch (2006)

Solutions

•
$$\psi'_{00} = e^{\lambda t} \cos(nz) \hat{\psi}'_{00}, \ v'_{11} = e^{\lambda t} \sin(nz) \hat{v}'_{11}, \ \phi_{00} = e^{\lambda t} \sin(nz) \hat{\phi}'_{00}, \ b_{11} = e^{\lambda t} \cos(nz) \hat{b}_{11}$$

- No variation in x
- $\bullet~$ Nonlinear ODE $\rightarrow~$ evolves to saturation
- Does not work for a combination of such modes

(日) (同) (三) (三)

Large Elsasser Regime $\mathcal{O}(1)$ Elsasser Regime

Modeling the Reduced Equations

Numerical Method

- Time integration: Runge-Kutta scheme (Spalart et. al. 1991)
 - diffusion terms treated implicitly
 - all other explicitly
- Spectral
 - Periodic boundary conditions in z
 - Rigid (no slip), Stress Free, or Periodic in x

Large Elsasser Regime $\mathcal{O}(1)$ Elsasser Regime

Case B: $\epsilon \ll \delta \ll 1, \Lambda \gg 1$

- Nonlinear and dissipative terms are subdominant
- Unbounded algebraic growth at leading order
- Saturation of v₀₀
 - $\bullet~$ Decaying and growing terms \rightarrow steady product
- No quadratic nonlinearities energy transferred through modification of the dispersion relation

Large Elsasser Regime $\mathcal{O}(1)$ Elsasser Regime

Case A: $\epsilon \sim \delta, \Lambda = \mathcal{O}(1)$

Single Mode results

- Good agreement with linear theory for a robust set of boundary conditions
- In particular the saturated value of $\partial_X \overline{v}_{00}$ matches the theory
- Can be of use in a parameterization model

Large Elsasser Regime $\mathcal{O}(1)$ Elsasser Regime

Case A: Channel Initial Condition

- ϕ_{00}^{\prime} Gaussian in x, vertical magnetic field lines
- \bullet Small random perturbation in $\psi_{\rm 00}^\prime$

•
$$v'_{11} = b'_{11} = 0$$

- Critical wavenumber grows
- Saturated state takes up the largest allowed scale in z (coarsening)

Ben Jamroz

Reduced Modeling of the MRI

Large Elsasser Regime $\mathcal{O}(1)$ Elsasser Regime

Coarsening

- $\bullet\,$ Begin from a random state with a fixed box length in z
- Fastest growing linear mode dominates early evolution
- Flow coarsens to fill computational domain
- The saturated value of $\partial_X \overline{v}_{00}$ matches the single mode theory for a mode with corresponding vertical wavenumber
 - Suggest using a parameterization model for large scale simulations
- Comparison with Case B

Summary & Future Work

- Derived reduced asymptotic models for the saturation of the MRI
- Found a back reaction on the imposed shear which allows for saturation
- Numerical results
- Future Work
 - Parameterization model
 - Non-axisymmetric
 - Non-axisymmetric saturation
 - $\bullet \ Dynamo \to saturation$