Exploiting Symmetries of MHD Flows (Another Way to Be Cheap)

Ed Lee

Department of Applied Physics and Applied Mathematics Columbia University, New York, NY

in conjunction with

Marc Brachet (École Normale Supérieure) Annick Pouquet (NCAR) Pablo Mininni (Univ. Buenos Aires) Duane Rosenberg (NCAR)

Institute for Mathematics Applied to Geoscience (IMAGe) National Center for Atmospheric Research (NCAR) Boulder, Colorado

> TOY 2008 Summer School 25 July 2008

Outline

I. Plasmas and magnetohydrodynamics (MHD)

- (A) Plasmas are hot and messy
- (B) MHD: Let's simplify the universe to two equations
- (C) Who cares about MHD?

II. Some "unrealistic" results from a symmetric flow

- (A) Washing-Machine symmetry
- (B) Current sheets that just want to be together
- (C) Turbulence and Alfvén Waves: competition or synergy?

Here Comes the Sun...

Active Region 10486 (4 Nov 2003), Photo courtesy of NASA

...throwing a fit!

TOY 2008 Summer School 25 July 2008

Too close to home

Doughnut-shaped confinement devices that will eventually save the world

TOY 2008 Summer School 25 July 2008

Other plasma phenomena

Plasma (hi-)def

Do I qualify?

(1) Strength in numbers (N >>> 1):

High enough density of particles that charges are felt in a *neighborhood* (λ_d), not just next door

(2) Size matters! (L >> λ_{d})

The size of the plasma is much larger than the neighborhood of influence.

(3) Bullheadedness (ω_p dominant)

Plasma frequency is much larger than electron-neutral collision frequency, so the plasma acts more like a plasma, not like a gas

- \rightarrow Quasineutrality
- \rightarrow Collective effects are possible
- \rightarrow Bulk internal interactions are more important than boundary effects
- → Large-scale oscillations are effectively shielded out and small-scale oscillations are damped.

Hierarchy of models

Kinetic Theory

Collisionless Boltzmann + Maxwell Eqns => Vlasov Eqn

Multi-fluid Descriptions

Separate momentum equations for electrons, ions, neutrals

Single-fluid Description

If collisions are important, we can describe the plasma as a FLUID

Simplify further!!!

→ Incompressible MHD = Navier-Stokes + Induction

MHD Equations

$$\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} + \nabla p = \mathbf{j} \times \mathbf{b} + \nu \Delta \mathbf{v}$$
$$\partial_t \mathbf{b} = \nabla \times (\mathbf{v} \times \mathbf{b}) + \eta \Delta b$$
$$\nabla \cdot \mathbf{v} = 0 = \nabla \cdot \mathbf{b}$$

Nondimensional Alfvén units ($v \propto b$): $\mathbf{v} = \text{velocity (momentum)}$ $\boldsymbol{\omega} = \text{vorticity} = \text{curl}(\mathbf{v})$ $\mathbf{b} = \text{magnetic field}$ $\mathbf{j} = \text{current density} = \text{curl}(\mathbf{b})$

"IDEAL" $\Leftrightarrow v = 0 = \eta$

TOY 2008 Summer School 25 July 2008

Who cares about MHD?

Development of Accretion Discs

Angular momentum transport by instability (Balbus & Hawley, 1991, 1998; Ben Jamroz!)

Heating of the Solar corona

- Alfvén waves (Haevaerts & Priest, 1983; Davila, 1987; Poedts et al., 1989)
- Resistive current sheets (Haevaerts & Priest, 1984; Galsgaard & Nordlund, 1996)
- Turbulence (Haevaerts & Priest, 1992; Cranmer & Ballegooijen, 2003)

Stellar and Planetary Dynamos

- Solar dynamo (Gilman, 1983; Glatzmaier, 1985)
- Geodynamo (Glatzmaier & Roberts, 1993-2003; Kuang & Bloxham, 1999)

Stellar Winds

Acceleration of solar wind by Alfven waves (Isenberg & Hollweg, 1982)

Planet-Moon Interactions

- Jupiter-lo (Belcher, 2008)
- Laboratory Plasmas (doughnuts and such)
 - Heating and transport through instabilities (Candy et al., 1997)

Multi-scale interactions

Physics:

- Current sheets: large scale structures with small-scale importance and origin
 - Important for reconnection (Biskamp, 1986)
- Turbulence: 'nuff said!
- Waves and turbulence
 - "Weak" turbulence (Galtier, Nazarenko, Newell, Pouquet, 2000)

CFD:

- Direct Numerical Simulation
- Adaptive Mesh Refinement
- Large-Eddy Simulation

Alfvén Waves: $\omega^2 \propto \mathbf{k} \cdot \mathbf{B_0}$ $\omega^2 = v_A^2 k_{\parallel}^2$

I. Recent advances in MHD/turbulence:

Multi-scale interactions

Adaptive mesh refinement (AMR)

Source: Rosenberg et al. (2007) New J. Phys.

Source: Grauer et al. (1998) Phys. Rev. Lett.

Multi-scale interactions

Large-eddy simulation

Part II:

Exploiting symmetries

Taylor-Green vortex

$$\begin{aligned} v_x &= v_0 \sin(x) \cos(y) \cos(z) \\ v_y &= -v_0 \cos(x) \sin(y) \cos(z) \\ v_z &= 0 \end{aligned}$$

TG vortex:

- Brachet et al., 1983; Brachet 1991
- Analyticity strip:
 - Brachet et al., 1992;
 - Cichowlas et al., 2005;
- Dynamo:
 - Nore et al., 1997

Magnetic Taylor-Green

MHD equations

$$\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} + \nabla p = \mathbf{j} \times \mathbf{b} + \nu \Delta \mathbf{v}$$
$$\partial_t \mathbf{b} = \nabla \times (\mathbf{v} \times \mathbf{b}) + \eta \Delta b$$
$$\nabla \cdot \mathbf{v} = 0 = \nabla \cdot \mathbf{b}$$

Nondimensional Alfvén units ($v \propto b$): $\mathbf{v} = \text{velocity (momentum)}$ $\boldsymbol{\omega} = \text{vorticity} = \text{curl}(\mathbf{v})$ $\mathbf{b} = \text{magnetic field}$ $\mathbf{j} = \text{current density} = \text{curl}(\mathbf{b})$

"IDEAL" $\Leftrightarrow v = 0 = \eta$

Initial velocity field

$$v_x = v_0 \sin(x) \cos(y) \cos(z)$$
$$v_y = -v_0 \cos(x) \sin(y) \cos(z)$$
$$v_z = 0$$

Initial magnetic field

$$b_x = b_0 \cos(x) \sin(y) \sin(z)$$

$$b_y = b_0 \sin(x) \cos(y) \sin(z)$$

$$b_z = -2b_0 \sin(x) \sin(y) \cos(z)$$

Lee, Brachet, Pouquet, Mininni, Rosenberg (2008) arXiv:0802:1550

Search for singularity

- Euler singularity
 - Beale-Kato-Majda (1984): $\lim \sup_{(t^{\uparrow}T^{*})} ||\omega(t)||_{\infty} = \infty \quad OR \quad \int ||\omega(t)||_{\infty} \, dt < \infty$

MHD

Caflisch-Klapper-Steele (1997):
 lim sup_(t↑T*) (||ω(t)||_∞ +||j(t)||_∞) = ∞ if singularity exists

 $\omega^{i}(x^{i}, t) = \text{vorticity}$ $j^{i}(x^{i}, t) = \text{current density}$

Analyticity strip

Sulem, Sulem, Frisch (1983):

- Also Frisch, Pouquet, Sulem, Meneguzzi (1983) 2D MHD
- Also Brachet et al. (1983) 3D Euler

Ideal MTG

Lee, Brachet, Pouquet, Mininni, Rosenberg (2008) arXiv:0802:1550

High-res simulation results

C

b

р

- IDEAL CASE ($\nu, \eta = 0$)
 - 2084³ resolution
- Integration:
 - NCAR IBM BlueGene/L ("Frost")
 - 80K CPU hrs (to t=3)
 - Pseudospectral, periodic BC, w/ symmetries implemented in code
 - Also code without imposed symmetries
 - 2nd-order RK timestepping
 - Also 4th-order

Visualization:

VAPOR (Clyne et al., 2007; Mininni et al., 2008 submitted)

Current sheets

Ideal 2048: comparison

High-res simulation results

Current sheets

- Thinning, merging
- Accompanied by rotational "discontinuity" of B (cf. Whang et al., 2004)

II. A flow with symmetries:

High-res simulation results

DISSIPATIVE CASE

- 2048³ resolution
- Integration:
 - NCAR IBM POWER5+ ("Blueice")
 - 10K CPU hrs (to t=8)
 - Pseudospectral, periodic BC, w/ symmetries implemented in code
 - Also code without imposed symmetries
 - 2nd-order RK timestepping
- Visualization:
 - VAPOR

Dissipation

III. Breakthrough prospects with petascale resources:

Dissipative MTG

III. Breakthrough prospects with petascale resources:

Dissipative MTG

Structures

- Current sheets
- Reconnection
- Instabilities
- Wave turbulence
 - Spectra
 - Structure functions
 - Time scales

Conclusions

Taylor-Green symmetries

- "Fully" resolved
- Ideal MTG
 - Development of current sheets
 - Need for higher resolution to study behavior of smaller scales
 - Evolution of complex-space singularities

Dissipative MTG

- Turbulence
- Waves and turbulence
- Current sheets and other coherent/dissipative structures
- Scaling laws
- Application to the "Real World"

