Turbulence Modeling for Atmospheric Simulations

Geophysical Turbulence Phenomena

NCAR, Boulder, CO, 25 July 2008

Tom Lund

NorthWest Research Associates, Colorado Research Associates Division Boulder Colorado, USA lund@cora.nwra.com http://www.cora.nwra.com/~lund

OUTLINE

- Review of the turbulence energy spectrum enormous range of length scales.
- Reduction of scale range via spatial filtering Large Eddy Simulation (LES).
- Closure problem required SubGrid-Scale (SGS) models for flows with significant buoyancy effects.
- Eddy viscosity models.
- Modeling via transport equations.
- Dynamic modeling.
- Failure of LES near the earth's surface what to do about it.
- Sample simulation results.
- Summary.

[–] Typeset by Foil $\mathrm{T}_{\!E}\!\mathrm{X}$ –

TURBULENCE ENERGY SPECTRUM

MESH POINT REQUIREMENTS FOR DNS

• From Turbulence theory, we have the following scaling relation:

 $(L/\eta) \sim Re^{3/4}$

• Using this information, we can form the following estimate:

Box size $\sim L$ Grid size $\sim \eta$ Number of mesh points in each direction $\sim (L/\eta) \sim Re^{3/4}$ Number of mesh points in 3D $\sim (L/\eta)^3 \sim (Re^{3/4})^3 \sim Re^{9/4}$

• Based on experience

$$N \simeq 6 R e^{9/4}$$

• For $Re = 10^6$, this estimate indicates that order 10^{14} mesh points are required!

• It is simply not possible to simulate all the relevant scales of motion at the high Reynolds numbers found in atmospheric flows.

[–] Typeset by FoilT $_{\!E\!} \! \mathrm{X}$ –

LARGE EDDY SIMULATION

• Our simulations can only resolve the large eddies. We must account for the effects of the unresolved motions via a turbulence model.

WHAT CAN WE RESOLVE?

 \bullet The kinetic energy and energy dissipation resolved up to wavenumber k are

• We can resolve nearly all of the kinetic energy (and turbulent transport) but very little of the energy dissipation.

FILTERING

• The separation into large and small scales is accomplished via a spatial filtering operation. In Fourier space this amounts to multiplication by a filter transfer function

$$\overline{\tilde{u}} = G(k)\tilde{u}(k)$$

Using the convolution theorem, the equivalent operation in physical space is

$$\overline{u} = \int_0^L f(x - x')u(x') \, dx'$$

Where f(x) and G(k) are Fourier transform pairs. Spatial filtering amounts to a weighted average of the function over a set region in space (filter length scale).

FILTERING EXAMPLE

DERIVATION OF THE LES EQUATIONS

The spatial average (filter) operator is applied to the mass, momentum, and potential temperature equations to give

$$\begin{aligned} \frac{\partial \bar{u}_i}{\partial x_i} &= 0\\ \frac{\partial \bar{u}_i}{\partial t} + \frac{\partial}{\partial x_j} (\bar{u}_i \bar{u}_j) &= -\frac{1}{\rho_0} \frac{\partial \bar{p}}{\partial x_i} - \frac{\partial \tau_{ij}}{\partial x_j} + \frac{g}{\theta_0} \bar{\theta} \delta_{i3} + \frac{\partial}{\partial x_j} \left(2\nu \bar{S}_{ij} \right) \\ \frac{\partial \bar{\theta}}{\partial t} + \frac{\partial}{\partial x_j} \left(\bar{\theta} \bar{u}_j \right) &= -\frac{\partial q_j}{\partial x_j} + \frac{\partial}{\partial x_j} \left(\kappa \frac{\partial \bar{\theta}}{\partial x_j} \right) \end{aligned}$$

Where τ_{ij} and q_i are the unresolved (SubGrid-Scale, SGS) stress and heat flux

$$\tau_{ij} \equiv \overline{u_i u_j} - \overline{u}_i \overline{u}_j \qquad q_j \equiv \overline{\theta u_j} - \overline{\theta} \overline{u}_j$$

and where \bar{S}_{ij} is the resolved rate of strain

$$\bar{S}_{ij} = \frac{1}{2} \left(\frac{\partial \bar{u}_i}{\partial x_j} + \frac{\partial \bar{u}_j}{\partial x_i} \right)$$

CLOSURE (TURBULENCE MODEL) REQUIRED

- The SGS stress (τ_{ij}) and SGS heat flux (q_j) appear as unknowns in the filtered momentum and temperature equations.
- Although we can derive exact evolution equations for these quantities, these equations contain additional unknown terms. This is the closure problem.
- We proceed by attempting to relate τ_{ij} and q_j to the resolved flow variables. This process is known as turbulence modeling.
- Unlike turbulence models for the Reynolds averaged equations (classical approach using a long time average), the LES system requires models only for the unresolved transport.
- SGS models are thus fundamentally different from classical turbulence models. In general, simpler models will suffice for the LES system.

[–] Typeset by Foil $\mathrm{T}_{\!E}\!\mathrm{X}$ –

THE TURBULENT KINETIC ENERGY BUDGET

• An Evolution equation for the resolved turbulent kinetic energy can be formed by taking the dot product of the resolved velocity with the resolved momentum equation

$$\bar{u}_{i}\frac{\partial\bar{u}_{i}}{\partial t} = \frac{\partial}{\partial t}\left(\frac{1}{2}\bar{u}_{i}\bar{u}_{i}\right) = \frac{\partial}{\partial t}\left(\frac{1}{2}\bar{u}^{2}\right) = \\
\underbrace{-\frac{\partial}{\partial x_{j}}\left[\left(\frac{1}{2}\bar{u}^{2} + \bar{p}\right)\bar{u}_{j}\right] + \frac{\partial}{\partial x_{j}}\left[\left(2\nu\bar{S}_{ij} - \tau_{ij}\right)\bar{u}_{i}\right]}_{\text{Transport}} + \underbrace{\bar{u}_{i}\bar{u}_{j}\frac{\partial\bar{u}_{i}}{\partial x_{j}}}_{\text{Shear Production Buoyancy Product}} + \underbrace{\frac{\tau_{ij}\bar{S}_{ij}}{2\nu\bar{S}_{ij}\bar{S}_{ij}}}_{\text{Transport}} \underbrace{-\frac{2\nu\bar{S}_{ij}\bar{S}_{ij}}{2\nu\bar{S}_{ij}\bar{S}_{ij}}}_{\text{Transport}} + \underbrace{\frac{-2\nu\bar{S}_{ij}\bar{S}_{ij}}{2\nu\bar{S}_{ij}\bar{S}_{ij}}}_{\text{Transport}} + \underbrace{\frac{-2\nu\bar{S}_{ij}\bar{S}_{ij}\bar{S}_{ij}}_{\text{Transport}}}_{\text{Transport}} + \underbrace{\frac{-2\nu\bar{S}_{ij}\bar{S}_{ij}}_{\text{Transport}}}_{\text{Transport}} + \underbrace{\frac{-2\nu\bar{S}_{ij}\bar{S}_{ij}}_{\text{Transport}}}_{\text{Transport}}_{\text{Tra$$

SGS Dissipation

Viscous Dissipation

BALANCING PRODUCTION AND DISSIPATION

- The resolved production is normally positive and is well represented by the resolved-scale motions.
- The resolved viscous dissipation is negative definite.
- Due to the removal of the small scales, however, the resolved dissipation is a small fraction of the total dissipation present in the unfiltered system.
- There is thus a large imbalance between production and dissipation in the filtered system.
- The primary objective of the SGS model is to provide sufficient dissipation in order to balance the energy budget.

[–] Typeset by FoilT $_{\!E\!}\!\mathrm{X}$ –

SPECTRAL VIEW

The energy flux at the filter scale must equal the total dissipation. Thus

$$\tau_{ij}\bar{S}_{ij} - 2\nu\bar{S}_{ij}\bar{S}_{ij} = -2\nu S_{ij}S_{ij}$$

EDDY VISCOSITY MODEL

Eddy viscosity is the simplest way to ensure a proper energy flux

$$\tau_{ij} = -\nu_t \bar{S}_{ij}$$

where ν_t is the *eddy viscosity*. Using this model, the energy balance becomes

$$\tau_{ij}\bar{S}_{ij} - 2\nu\bar{S}_{ij}\bar{S}_{ij} = -2\nu S_{ij}S_{ij}$$
$$-2\nu_t\bar{S}_{ij}\bar{S}_{ij} - 2\nu\bar{S}_{ij}\bar{S}_{ij} = -2\nu S_{ij}S_{ij}$$
$$(\nu + \nu_t)\bar{S}^2 = \nu S^2$$

Thus we can obtain the correct energy flux in order to balance production and dissipation through the correct specification of the eddy viscosity.

[–] Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

SMAGORINSKY MODEL

• Smagorinsky (1961) postulated the following prescription for the SGS eddy viscosity:

$$\nu_t = C_s \underbrace{\Delta}_{\sim l} \underbrace{\Delta |\bar{S}|}_{\sim u}$$

where C_s is a non-dimensional scaling factor, Δ is the mesh spacing, and $|\bar{S}| = \sqrt{2\bar{S}^2}$ is the strain rate magnitude.

• For homogeneous unstratified flows, $C_s \simeq 0.01$. For inhomogeneous and stratified flows, C_s may be required to vary in space and with the relative stability.

HEAT FLUX MODEL

• The simplest heat flux model is the eddy diffusivity model

$$q_j = -\kappa_t \frac{\partial \theta}{\partial x_j}$$

where κ_t is the *eddy diffusivity*.

• It is customary to relate κ_t to ν_t via a *turbulent Prandtl number*

$$\Pr_t = \frac{\nu_t}{\kappa_t} \qquad \kappa_t = \frac{\nu_t}{\Pr_t}$$

• For homogeneous, unstratified flows, $Pr_t \simeq 1$. For inhomogeneous, stratified flows Pr_t may need to vary in space and vary with the relative stability.

MORE COMPLEX EDDY VISCOSITY MODELS

• TKE model.

- Turbulent kinetic energy based eddy viscosity *ala* Deardorff (1980), Moeng (1984).
- Stability-corrected mixing length scale.
- Stability-corrected turbulent Prandtl number for heat flux.
- Dynamic Smagorinsky, dynamic heat flux model.
 - Parameter-free computation of eddy viscosity and eddy diffusivity.
 - No Prandtl number assumption is necessary.
 - Effect of stability is accounted for automatically.

TKE MODEL

$$\tau_{ij} = -2\nu_t \bar{S}_{ij}$$
$$q_i = -k_t \frac{\partial \bar{\theta}}{\partial x_i}$$

where the eddy viscosity and eddy diffusivity are computed according to

$$\nu_t = C_k l e^{1/2}$$

$$k_t = \underbrace{\left(1 + \frac{2l}{\Delta}\right)}_{1/Pr_t} \nu_t$$

and where l is the mixing length, e is the subgrid-scale kinetic energy, and Δ is the LES filter width. The mixing length is computed via

$$l = \begin{cases} \Delta & \text{convectively unstable} \\ \frac{0.76e^{1/2}}{\left(\frac{g}{\theta_0}\frac{\partial\theta}{\partial z}\right)^{1/2}} & \text{convectively stable} \end{cases}$$

KINETIC ENERGY TRANSPORT EQUATION

$$\left(\frac{\partial}{\partial t} + \bar{u}_j \frac{\partial}{\partial x_j}\right) e = P + B - \epsilon + D$$

where

$$P = -\tau_{ij}\bar{S}_{ij}$$

$$B = \frac{g}{\theta_0}q_3$$

$$\epsilon = C_{\epsilon}\frac{e^{3/2}}{l}$$

$$D = \frac{\partial}{\partial x_i}\left(2\nu_t\frac{\partial e}{\partial x_i}\right)$$

The constants are set as follows:

$$C_k = 0.1 \qquad C_\epsilon = 0.93$$

DYNAMIC MODEL

The dynamic model makes use of scale-similarity ideas in order to estimate SGS stresses from the stresses produced by the smallest resolved length scales.

SOLUTION FOR C_s

Grid level: \overline{u}_i ;

Test level:

$$\tau_{ij} = \overline{u_i u_j} - \overline{u}_i \overline{u}_j \simeq -2(C_s \overline{\Delta})^2 |\overline{S}| \overline{S}_i$$

$$T_{ij} = \widehat{\overline{u_i u_j}} - \widehat{\overline{u}}_i \widehat{\overline{u}}_j \simeq -2(C_s \widehat{\Delta})^2 |\widehat{S}| \widehat{S}_i$$

įj

Germano's identity:

 \widehat{u}_i

$$T_{ij} - \widehat{\tau}_{ij} \equiv L_{ij} = \underbrace{\overline{\overline{u}_i \overline{u}_j} - \widehat{\overline{u}_i} \widehat{\overline{u}_j}}_{\text{computable}}$$

Postulate Smagorinsky models at both the test and grid scales, substitute into Germano's identity

$$-2(C_s\overline{\Delta})^2 \underbrace{\left(\frac{\widehat{\Delta}^2}{\overline{\Delta}^2}|\widehat{S}|\widehat{S}_i j - |\widehat{\overline{S}}|\widehat{\overline{S}}_{ij}\right)}_{M_{ij}} = L_{ij} - \frac{1}{3}L_{kk}$$

Least squares solution for C_s

$$(C_s\overline{\Delta})^2 = -\frac{1}{2} \frac{\langle L_{ij}M_{ij} \rangle}{\langle M_{ij}M_{ij} \rangle}$$

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

SOLUTION FOR C_h

Germano's identity for scalar flux:

$$Q_i - \widehat{q}_i \equiv H_i = \underbrace{\overline{\overline{u}_i \overline{\overline{\theta}}} - \widehat{\overline{u}}_i \widehat{\overline{\theta}}}_{\text{computable}}$$

Postulate gradient diffusion models at both the test and grid scales, substitute into Germano's identity

$$-(C_h\overline{\Delta})^2 \underbrace{\left(\frac{\widehat{\Delta}^2}{\overline{\Delta}^2}|\widehat{S}|\frac{\partial\widehat{\theta}}{\partial x_i} - |\overline{S}|\frac{\partial\overline{\theta}}{\partial x_i}\right)}_{N_i} = H_i$$

Least squares solution for C_h

$$(C_h\overline{\Delta})^2 = -\frac{\langle H_i N_i \rangle}{\langle N_i N_i \rangle}$$

– Typeset by Foil T_EX –

ADVANTAGES OF THE DYNAMIC PROCEDURE

- The model constants C_s and C_h are computed as a function of space and time as the simulation evolves.
- Stability and the necessary damping near the surface are accounted for automatically.
- No external inputs are required.

But ...

- The filter scale must be in the inertial range.
- This requirement is almost never met near the surface for the atmospheric boundary layer or at coarse resolution away from the surface.

[–] Typeset by FoilT $_{\!E\!X}$ –

NEAR-SURFACE ISSUES

Following Sullivan et al. (1994) we reason as follows:

• In the absence of strong buoyant forcing, the size of the dominant eddies in the near-surface region scales with the distance from the surface.

NEAR-SURFACE ISSUES

Following Sullivan *et al.* (1994) we reason as follows:

- In the absence of strong buoyant forcing, the size of the dominant eddies in the near-surface region scales with the distance from the surface.
- We can not possibly resolve these eddies with conventional LES methods.
- The representation of the flow in the near-surface region is thus more like a Reynolds Averaged Navier Stokes (RANS) computation.
- It is therefore sensible to make use of RANS modeling ideas for the near-surface layer.

TWO-PART EDDY VISCOSITY MODEL

Sullivan's ideas can be realized via a two-part eddy viscosity model

$$\tau_{ij} = -\underbrace{2\gamma(z)\nu_t S_{ij}}_{\text{LES part}} - \underbrace{2V_T \langle S_{ij} \rangle}_{\text{RANS part}}$$

 $V_T = 2C_R \Delta^2 |\langle S \rangle|$

- The RANS part is active mainly in the near-surface region; $\langle S \rangle$ is maximum at the surface and falls off like 1/z with height.
- In the case of the tke model, the LES part is multiplied by $\gamma(z)$, an isotropy (damping) function that reduces its influence near the surface. The dynamic model does this automatically and thus no isotropy function is used in this case.

DETERMINATION OF C_R

Determine C_R such that the mean speed derivative matches with similarity theory at the first grid point.

Postulate a constant stress layer near the surface. Then the computed total stress at the first grid point should satisfy

$$\left[\langle \tau_{13} \rangle_1^2 + \langle \tau_{23} \rangle_1^2\right]^{1/2} + \left[\langle u'w' \rangle_1^2 + \langle v'w' \rangle_1^2\right]^{1/2} = u_*$$

Mean SGS stress, neglecting the fluctuating strain at the first grid point;

$$\langle \tau_{13} \rangle_1 \simeq -2 \left(\langle \gamma \nu_t \rangle_1 + V_{T1} \right) \langle \frac{\partial u}{\partial z} \rangle_1$$
$$\langle \tau_{23} \rangle_1 \simeq -2 \left(\langle \gamma \nu_t \rangle_1 + V_{T1} \right) \langle \frac{\partial v}{\partial z} \rangle_1$$

– Typeset by Foil $T_{\!E\!}\!\mathrm{X}$ –

The surface stress condition then becomes

$$2\left(\langle\gamma\nu_t\rangle_1 + V_{T1}\right)\left[\left(\frac{\partial\langle u\rangle_1}{\partial z}\right)^2 + \left(\frac{\partial\langle v\rangle_1}{\partial z}\right)^2\right]^{1/2} + \left[\langle u'w'\rangle_1^2 + \langle v'w'\rangle_1^2\right]^{1/2} = u_*$$

Neglect the turning of the mean wind speed at the first grid point:

$$\left[\left(\frac{\partial \langle u \rangle_1}{\partial z} \right)^2 + \left(\frac{\partial \langle v \rangle_1}{\partial z} \right)^2 \right]^{1/2} \simeq \frac{\partial U_{s1}}{\partial z} = \frac{u_* \phi_m(z_1)}{k z_1}$$

solve for V_{T1}

$$V_{T1} = \frac{u_* k z_1}{\phi_m(z_1)} - \langle \gamma \nu_t \rangle_1 - \frac{k z_1}{u_* \phi_m(z_1)} \left[\langle u' w' \rangle_1^2 + \langle v' w' \rangle_1^2 \right]^{1/2}$$

At any other height

$$V_T = V_{T1} \frac{|\langle S \rangle|}{|\langle S \rangle|_1}$$

BOUNDARY CONDITIONS

SURFACE BOUNDARY CONDITIONS

$$\tau_{13}(x, y, z_1) = -u_*^2 \left[\frac{\langle U_s \rangle u'(x, y) + U_s(x, y) \langle u \rangle}{\langle U_s \rangle \sqrt{\langle u \rangle^2 + \langle v \rangle^2}} \right]_1$$

$$\tau_{23}(x, y, z_1) = -u_*^2 \left[\frac{\langle U_s \rangle v'(x, y) + U_s(x, y) \langle v \rangle}{\langle U_s \rangle \sqrt{\langle u \rangle^2 + \langle v \rangle^2}} \right]_1$$

$$q_3(x, y, z_1) = -Q_* \left[\frac{\langle U_s \rangle \theta'(x, y) + U_s(x, y) \langle \theta - \theta_0 \rangle}{\langle U_s \rangle (\langle \theta \rangle - \theta_0)} \right]_1$$

where

$$u'(x, y, z) = u(x, y, z) - \langle u \rangle$$
, etc. $U_s(x, y, z) = \sqrt{u(x, y, z)^2 + v(x, y, z)^2}$

These forms obey the constraints

$$\sqrt{\langle \tau_{13}(x,y,z_1) \rangle^2 + \langle \tau_{23}(x,y,z_1) \rangle^2} = u_*^2$$
$$\langle q_3(x,y,z_1) \rangle = Q_*$$

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

ESTIMATION OF SURFACE FLUXES

Use surface similarity theory:

$$\langle U_s \rangle_1 = \frac{u_*}{k} \left[\log \left(\frac{z_1}{z_0} \right) + \beta_m \left(\frac{z_1}{L} \right) \right]$$
$$\langle \theta \rangle_1 - \theta_0 = \frac{Q_*}{u_* k} \left[\log \left(\frac{z_1}{z_0} \right) + \beta_h \left(\frac{z_1}{L} \right) \right]$$

Solve for u_* and Q_* :

$$u_{*} = \frac{\langle U_{s} \rangle_{1} k}{\log\left(\frac{z_{1}}{z_{0}}\right) + \beta_{m}\left(\frac{z_{1}}{L}\right)}$$
$$Q_{*} = \frac{(\langle \theta \rangle_{1} - \theta_{0}) u_{*} k}{\log\left(\frac{z_{1}}{z_{0}}\right) + \beta_{h}\left(\frac{z_{1}}{L}\right)}$$

The constants are set as follows:

$$\beta_m = 5.0 \qquad \beta_h = 5.0 \qquad k = 0.4$$

– Typeset by Foil $T_{\!E\!} \! \mathrm{X}$ –

KELVIN-HELMHOLTZ TEST PROBLEM

- Simulate a wind shear event in a stable atmosphere Re = 2000, Ri = 0.05.
- Compare the LES results with DNS computed on a much finer (factor of 12 in each direction) mesh.
- Compare the TKE with the dynamic Smagorinsky model.

RESULTS - KE DECAY

RESULTS - STREAMWISE VELOCITY FLUCTUATION

U rms, Effect of SGS Model, 60X20X120

RESULTS - POTENTIAL TEMPERATURE FLUCTUATION

T rms, Effect of SGS Model, 60X20X120

RESULTS - EDDY VISCOSITY AND DIFFUSIVITY

RESULTS - TURBULENT PRANDTL NUMBER

HOW WELL RESOLVED ARE ATMOSPHERIC SIMULATIONS?

IS IT REALLY LES?

- Detailed process studies are LES (by construction).
- Mesoscale simulation may barely satisfy the requirements of LES.
- Synoptic scale and larger simulations typically do not resolve the integral scale and thus violate the underlying ideas of LES (i.e. bulk of the turbulent transport is *not resolved*).
- Turbulence modeling for large-scale simulations proceed along the same lines but with lots of ad hoc modifications.

SUMMARY

- It is impossible to resolve all relevant length scales in turbulent atmospheric flows.
- We apply a spatial filter to eliminate small scales and then account for their effects through a turbulence model.
- The turbulence model must supply the correct energy flux at the filter cutoff in order to balance production and dissipation.
- Simple eddy viscosity models can achieve such a balance.
- Many different approaches exist for scaling the eddy viscosity.
- Dynamic modeling is self-calibrating but requires the filter cutoff to be in the inertial range.
- The LES approach is successful if the resolution is adequate and the model is well calibrated.

[–] Typeset by Foil $\mathrm{T}_{\!E}\!\mathrm{X}$ –