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OUTLINE

• Review of the turbulence energy spectrum - enormous range of length scales.

• Reduction of scale range via spatial filtering - Large Eddy Simulation (LES).

• Closure problem - required SubGrid-Scale (SGS) models for flows with significant
buoyancy effects.

• Eddy viscosity models.

• Modeling via transport equations.

• Dynamic modeling.

• Failure of LES near the earth’s surface - what to do about it.

• Sample simulation results.

• Summary.
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TURBULENCE ENERGY SPECTRUM
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MESH POINT REQUIREMENTS FOR DNS

• From Turbulence theory, we have the following scaling relation:

(L/η) ∼ Re3/4

• Using this information, we can form the following estimate:

Box size ∼ L

Grid size ∼ η

Number of mesh points in each direction ∼ (L/η) ∼ Re3/4

Number of mesh points in 3D ∼ (L/η)3 ∼ (Re3/4)3 ∼ Re9/4

• Based on experience
N ' 6Re9/4

• For Re = 106, this estimate indicates that order 1014 mesh points are required!

• It is simply not possible to simulate all the relevant scales of motion at the
high Reynolds numbers found in atmospheric flows.
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LARGE EDDY SIMULATION

• Our simulations can only resolve the large eddies. We must account for the
effects of the unresolved motions via a turbulence model.
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WHAT CAN WE RESOLVE?

• The kinetic energy and energy dissipation resolved up to wavenumber k are

Energy =
∫ k

0

E(k′) dk′ Dissipation = ν

∫ k

0

k′
2
E(k′) dk′
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• We can resolve nearly all of the kinetic energy (and turbulent transport)
but very little of the energy dissipation.
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FILTERING

• The separation into large and small scales is accomplished via a spatial filtering
operation. In Fourier space this amounts to multiplication by a filter transfer
function

ũ = G(k)ũ(k)
Using the convolution theorem, the equivalent operation in physical space is

u =
∫ L

0

f(x− x′)u(x′) dx′

Where f(x) and G(k) are Fourier transform pairs. Spatial filtering amounts to a
weighted average of the function over a set region in space (filter length scale).
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FILTERING EXAMPLE

In Fourier space
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DERIVATION OF THE LES EQUATIONS

The spatial average (filter) operator is applied to the mass, momentum, and
potential temperature equations to give

∂ūi

∂xi
= 0

∂ūi

∂t
+

∂

∂xj
(ūiūj) = − 1

ρ0

∂p̄

∂xi
− ∂τij

∂xj
+

g

θ0
θ̄δi3 +

∂

∂xj

(
2νS̄ij

)
∂θ̄

∂t
+

∂

∂xj

(
θ̄ūj

)
= −∂qj

∂xj
+

∂

∂xj

(
κ

∂θ̄

∂xj

)
Where τij and qi are the unresolved (SubGrid-Scale, SGS) stress and heat flux

τij ≡ uiuj − ūiūj qj ≡ θuj − θ̄ūj

and where S̄ij is the resolved rate of strain

S̄ij =
1
2

(
∂ūi

∂xj
+

∂ūj

∂xi

)
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CLOSURE (TURBULENCE MODEL) REQUIRED

• The SGS stress (τij) and SGS heat flux (qj) appear as unknowns in the filtered
momentum and temperature equations.

• Although we can derive exact evolution equations for these quantities, these
equations contain additional unknown terms. This is the closure problem.

• We proceed by attempting to relate τij and qj to the resolved flow variables.
This process is known as turbulence modeling.

• Unlike turbulence models for the Reynolds averaged equations (classical approach
using a long time average), the LES system requires models only for the
unresolved transport.

• SGS models are thus fundamentally different from classical turbulence models.
In general, simpler models will suffice for the LES system.
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THE TURBULENT KINETIC ENERGY BUDGET

• An Evolution equation for the resolved turbulent kinetic energy can be formed
by taking the dot product of the resolved velocity with the resolved momentum
equation

ūi
∂ūi

∂t
=

∂

∂t

(
1
2
ūiūi

)
=

∂

∂t

(
1
2
ū2

)
=

− ∂

∂xj

[(
1
2
ū2 + p̄

)
ūj

]
+

∂

∂xj

[(
2νS̄ij − τij

)
ūi

]
︸ ︷︷ ︸

Transport

+ ūiūj
∂ūi

∂xj︸ ︷︷ ︸
Shear Production

+
g

θ0
θ̄ū3︸ ︷︷ ︸

Buoyancy Production

+ τijS̄ij︸ ︷︷ ︸
SGS Dissipation

− 2νS̄ijS̄ij︸ ︷︷ ︸
Viscous Dissipation
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BALANCING PRODUCTION AND DISSIPATION

∂

∂t

(
1
2
ū2

)
= ... ūiūj

∂ūi

∂xj︸ ︷︷ ︸
Shear Production

+
g

θ0
θ̄ū3︸ ︷︷ ︸

Buoyancy Production

+ τijS̄ij︸ ︷︷ ︸
SGS Dissipation

− 2νS̄ijS̄ij︸ ︷︷ ︸
Viscous Dissipation

• The resolved production is normally positive and is well represented by the
resolved-scale motions.

• The resolved viscous dissipation is negative definite.

• Due to the removal of the small scales, however, the resolved dissipation is a
small fraction of the total dissipation present in the unfiltered system.

• There is thus a large imbalance between production and dissipation in the filtered
system.

• The primary objective of the SGS model is to provide sufficient dissipation
in order to balance the energy budget.
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SPECTRAL VIEW
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The energy flux at the filter scale must equal the total dissipation. Thus

τijS̄ij − 2νS̄ijS̄ij = −2νSijSij
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EDDY VISCOSITY MODEL

Eddy viscosity is the simplest way to ensure a proper energy flux

τij = −νtS̄ij

where νt is the eddy viscosity. Using this model, the energy balance becomes

τijS̄ij − 2νS̄ijS̄ij = −2νSijSij

−2νtS̄ijS̄ij − 2νS̄ijS̄ij = −2νSijSij

(ν + νt)S̄2 = νS2

Thus we can obtain the correct energy flux in order to balance production and
dissipation through the correct specification of the eddy viscosity.
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SMAGORINSKY MODEL

• Smagorinsky (1961) postulated the following prescription for the SGS eddy
viscosity:

νt = Cs ∆︸︷︷︸
∼l

∆|S̄|︸︷︷︸
∼u

where Cs is a non-dimensional scaling factor, ∆ is the mesh spacing, and |S̄| =√
2S̄2 is the strain rate magnitude.

• For homogeneous unstratified flows, Cs ' 0.01. For inhomogeneous and stratified
flows, Cs may be required to vary in space and with the relative stability.
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HEAT FLUX MODEL

• The simplest heat flux model is the eddy diffusivity model

qj = −κt
∂θ̄

∂xj

where κt is the eddy diffusivity.

• It is customary to relate κt to νt via a turbulent Prandtl number

Prt =
νt

κt
κt =

νt

Prt

• For homogeneous, unstratified flows, Prt ' 1. For inhomogeneous, stratified
flows Prt may need to vary in space and vary with the relative stability.
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MORE COMPLEX EDDY VISCOSITY MODELS

• TKE model.

– Turbulent kinetic energy based eddy viscosity ala Deardorff (1980), Moeng
(1984).

– Stability-corrected mixing length scale.

– Stability-corrected turbulent Prandtl number for heat flux.

• Dynamic Smagorinsky, dynamic heat flux model.

– Parameter-free computation of eddy viscosity and eddy diffusivity.

– No Prandtl number assumption is necessary.

– Effect of stability is accounted for automatically.
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TKE MODEL

τij = −2νtS̄ij

qi = −kt
∂θ̄

∂xi

where the eddy viscosity and eddy diffusivity are computed according to

νt = Ckle
1/2

kt =
(

1 +
2l

∆

)
︸ ︷︷ ︸

1/Prt

νt

and where l is the mixing length, e is the subgrid-scale kinetic energy, and ∆ is the
LES filter width. The mixing length is computed via

l =


∆ convectively unstable

0.76e1/2“
g
θ0

∂θ
∂z

”1/2 convectively stable
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KINETIC ENERGY TRANSPORT EQUATION(
∂

∂t
+ ūj

∂

∂xj

)
e = P + B − ε + D

where

P = −τijS̄ij

B =
g

θ0
q3

ε = Cε
e3/2

l

D =
∂

∂xi

(
2νt

∂e

∂xi

)
The constants are set as follows:

Ck = 0.1 Cε = 0.93
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DYNAMIC MODEL

The dynamic model makes use of scale-similarity ideas in order to estimate SGS
stresses from the stresses produced by the smallest resolved length scales.

kk̂

in order to
estimate 
unresolved 
stresses

compute
stresses
here

.

E(k)

k
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SOLUTION FOR Cs

Grid level: ui; τij = uiuj − uiuj ' −2(Cs∆)2|S|Sij

Test level: ûi; Tij = ûiuj − ûiûj ' −2(Cs∆̂)2|Ŝ|Ŝij

Germano’s identity:

Tij − τ̂ij ≡ Lij = ûiuj − ûiûj︸ ︷︷ ︸
computable

Postulate Smagorinsky models at both the test and grid scales, substitute into
Germano’s identity

−2(Cs∆)2
(

∆̂2

∆
2|Ŝ|Ŝij − ̂|S|Sij

)
︸ ︷︷ ︸

Mij

= Lij −
1
3
Lkk

Least squares solution for Cs

(Cs∆)2 = −1
2
〈LijMij〉
〈MijMij〉
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SOLUTION FOR Ch

Grid level: θ; qi = uiθ − uiθ ' −(Ch∆)2|S| ∂θ
∂xi

Test level: θ̂; Qi = ûiθ − ûiθ̂ ' −(Ch∆̂)2|Ŝ| ∂bθ
∂xi

Germano’s identity for scalar flux:

Qi − q̂i ≡ Hi = ûiθ − ûiθ̂︸ ︷︷ ︸
computable

Postulate gradient diffusion models at both the test and grid scales, substitute into
Germano’s identity

−(Ch∆)2

∆̂2

∆
2|Ŝ|

∂θ̂

∂xi
−

̂
|S| ∂θ

∂xi


︸ ︷︷ ︸

Ni

= Hi

Least squares solution for Ch

(Ch∆)2 = −〈HiNi〉
〈NiNi〉
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ADVANTAGES OF THE DYNAMIC PROCEDURE

• The model constants Cs and Ch are computed as a function of space and time
as the simulation evolves.

• Stability and the necessary damping near the surface are accounted for
automatically.

• No external inputs are required.

But ...

• The filter scale must be in the inertial range.

• This requirement is almost never met near the surface for the atmospheric
boundary layer or at coarse resolution away from the surface.
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NEAR-SURFACE ISSUES

Following Sullivan et al. (1994) we reason as follows:

• In the absence of strong buoyant forcing, the size of the dominant eddies in the
near-surface region scales with the distance from the surface.

unresolved
eddies

resolved
eddy

w
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NEAR-SURFACE ISSUES

Following Sullivan et al. (1994) we reason as follows:

• In the absence of strong buoyant forcing, the size of the dominant eddies in the
near-surface region scales with the distance from the surface.

• We can not possibly resolve these eddies with conventional LES methods.

• The representation of the flow in the near-surface region is thus more like a
Reynolds Averaged Navier Stokes (RANS) computation.

• It is therefore sensible to make use of RANS modeling ideas for the near-surface
layer.
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TWO-PART EDDY VISCOSITY MODEL

Sullivan’s ideas can be realized via a two-part eddy viscosity model

τij = − 2γ(z)νtSij︸ ︷︷ ︸
LES part

− 2VT 〈Sij〉︸ ︷︷ ︸
RANS part

VT = 2CR∆2|〈S〉|

• The RANS part is active mainly in the near-surface region; 〈S〉 is maximum at
the surface and falls off like 1/z with height.

• In the case of the tke model, the LES part is multiplied by γ(z), an isotropy
(damping) function that reduces its influence near the surface. The dynamic
model does this automatically and thus no isotropy function is used in this case.
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DETERMINATION OF CR

Determine CR such that the mean speed derivative matches with similarity theory
at the first grid point.

Postulate a constant stress layer near the surface. Then the computed total stress
at the first grid point should satisfy

[
〈τ13〉21 + 〈τ23〉21

]1/2
+
[
〈u′w′〉21 + 〈v′w′〉21

]1/2
= u∗

Mean SGS stress, neglecting the fluctuating strain at the first grid point;

〈τ13〉1 ' −2 (〈γνt〉1 + VT 1) 〈
∂u

∂z
〉1

〈τ23〉1 ' −2 (〈γνt〉1 + VT 1) 〈
∂v

∂z
〉1
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The surface stress condition then becomes

2 (〈γνt〉1 + VT 1)

[(
∂〈u〉1
∂z

)2

+
(

∂〈v〉1
∂z

)2
]1/2

+
[
〈u′w′〉21 + 〈v′w′〉21

]1/2
= u∗

Neglect the turning of the mean wind speed at the first grid point:

[(
∂〈u〉1
∂z

)2

+
(

∂〈v〉1
∂z

)2
]1/2

' ∂Us1

∂z
=

u∗φm(z1)
kz1

solve for VT 1

VT 1 =
u∗kz1

φm(z1)
− 〈γνt〉1 −

kz1

u∗φm(z1)
[
〈u′w′〉21 + 〈v′w′〉21

]1/2

At any other height

VT = VT 1

|〈S〉|
|〈S〉|1
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BOUNDARY CONDITIONS

dz
dw

dx
dv= −[ + ]du
dy

du
dz =0dv

dz
,

q3 specified
u, v, w=0

P specified ala
Klemp & Durran
1983

θ=θ( t)

13, τ23τ ,  
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SURFACE BOUNDARY CONDITIONS

τ13(x, y, z1) = −u2
∗

[
〈Us〉u′(x, y) + Us(x, y)〈u〉

〈Us〉
√
〈u〉2 + 〈v〉2

]
1

τ23(x, y, z1) = −u2
∗

[
〈Us〉v′(x, y) + Us(x, y)〈v〉

〈Us〉
√
〈u〉2 + 〈v〉2

]
1

q3(x, y, z1) = −Q∗

[
〈Us〉θ′(x, y) + Us(x, y)〈θ − θ0〉

〈Us〉(〈θ〉 − θ0)

]
1

where

u′(x, y, z) = u(x, y, z)− 〈u〉, etc. Us(x, y, z) =
√

u(x, y, z)2 + v(x, y, z)2

These forms obey the constraints√
〈τ13(x, y, z1)〉2 + 〈τ23(x, y, z1)〉2 = u2

∗

〈q3(x, y, z1)〉 = Q∗
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ESTIMATION OF SURFACE FLUXES

Use surface similarity theory:

〈Us〉1 =
u∗

k

[
log
(

z1

z0

)
+ βm

(z1

L

)]

〈θ〉1 − θ0 =
Q∗

u∗k

[
log
(

z1

z0

)
+ βh

(z1

L

)]
Solve for u∗ and Q∗:

u∗ =
〈Us〉1k

log
(

z1
z0

)
+ βm

(
z1
L

)
Q∗ =

(〈θ〉1 − θ0)u∗k

log
(

z1
z0

)
+ βh

(
z1
L

)
The constants are set as follows:

βm = 5.0 βh = 5.0 k = 0.4
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KELVIN-HELMHOLTZ TEST PROBLEM

• Simulate a wind shear event in a stable atmosphere Re = 2000, Ri = 0.05.

• Compare the LES results with DNS computed on a much finer (factor of 12 in
each direction) mesh.

• Compare the TKE with the dynamic Smagorinsky model.
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RESULTS - KE DECAY
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RESULTS - MEAN STREAMWISE VELOCITY
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RESULTS - MEAN POTENTIAL TEMPERATURE
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RESULTS - STREAMWISE VELOCITY FLUCTUATION
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RESULTS - POTENTIAL TEMPERATURE FLUCTUATION
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RESULTS - EDDY VISCOSITY AND DIFFUSIVITY
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RESULTS - TURBULENT PRANDTL NUMBER
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HOW WELL RESOLVED ARE ATMOSPHERIC
SIMULATIONS?

mesoscale
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IS IT REALLY LES?

• Detailed process studies are LES (by construction).

• Mesoscale simulation may barely satisfy the requirements of LES.

• Synoptic scale and larger simulations typically do not resolve the integral scale
and thus violate the underlying ideas of LES (i.e. bulk of the turbulent transport
is not resolved).

• Turbulence modeling for large-scale simulations proceed along the same lines
but with lots of ad hoc modifications.
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SUMMARY

• It is impossible to resolve all relevant length scales in turbulent atmospheric
flows.

• We apply a spatial filter to eliminate small scales and then account for their
effects through a turbulence model.

• The turbulence model must supply the correct energy flux at the filter cutoff in
order to balance production and dissipation.

• Simple eddy viscosity models can achieve such a balance.

• Many different approaches exist for scaling the eddy viscosity.

• Dynamic modeling is self-calibrating but requires the filter cutoff to be in the
inertial range.

• The LES approach is successful if the resolution is adequate and the model is
well calibrated.

– Typeset by FoilTEX – 42


