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Motivation

Structure of thermal convection over heated terrain. 

Vertical velocities after 6h of simulated time are shown within the PBL depth. Grey 
iso-surfaces represent clouds, and dark green patterns mark updrafts at boundary 
layer top. Isolines and other colors show the topography. The only difference 
between the two simulations is the effective viscosity of numerical advection.



  

 Rayleigh number :
g – gravity acceleration
h – fluid layer thickness
ν – kinematic viscosity
ν θ – thermal diffusivity
Δθ /θ – pot. temperature,
   relative  change  over h

 Ra measures relative magnitude of buoyancy and viscous forces 
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In the dry atmosphere:

 

h= 1000 m 
ν = 1.7 x 10-5 
νθ =1.9 x 10-5

Δθ /θ = 0.1 x 10-2

Ra ≈ 1016 !!!

 Modified definition (Jeffreys, 1928)

Km -  effective
„eddy diffusivity”

So, how to explain  cellular convection  ?

Note, K
m
 can be different in the horizontal and in the vertical.
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 Although research on eddy viscosity effects on atmospheric 
cellular convection has  continued for nearly a century ---

 --- the problem lacks conclusion, and calls for attention with 
the advent of  O(1) km resolution NWP.



  

dx=dy≈500 m

dz=50 m

Heat flux
hfx=200 W/m2

 Flat lower boundary, doubly periodic 
 horizontal domain,  Boussinesq option

Reference setup alludes to contemporary, 
mesoscale cloud-resolving NWP

Numerical substantiation
 Series  of  LES using the EULAG (MPDATA) model

V = [-10,-10] m/s



  

Canonical case: V=[0,0] and constant viscosities

Structure of thermal convection over heated plate. Vertical velocities after 6h of 
simulated time are shown within the PBL depth. Bright and dark volumes denote 
updrafts and downdrafts, respectively. The only difference between the two 
solutions is the value of viscosity in horizontal entries of the stress tensor, 
νh= 2.5  m2s−1 and νh= 70 m2s−1 ; the vertical entry  νv= 2.5 m2s−1   in both cases.



  

Linear theory

Asymptotic marginal stability relations for a finite Prandtl number and
 νh = νv (black solid), νv = 0 (blue circles) and νh = 0 (red squares). 
Respective Rayleigh numbers Rah, Ra and Rav are shown in function of the 
squared horizontal wave number. Stability region is below the curves.
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Sources of Ra anisotropy

 Numerical dissipation ~V (flow magnitude), as 
oppose to  ~∂V; e.g., first-order upwinding, or 
composite schemes  

 Using numerical schemes with different 
dissipative properties in the horizontal and in  
the vertical

 Explicit anisotropic filtering 



  

Domain and resolution required to 
faithfully represent convective 

structures: 

 D = O(10) km x O(10) km  in the horizontal 

 
  Δ = O(10) m   horizontal resolution 



  

Grid spacing 
required to resolve 
width of convective 
rolls appears to be 
 O (10) m Δ = 31.25 m

Δ = 125 m

Δ = 62.5 m

Δ = 250 m

 



  

Horizontal domain 
size required to 
capture two 
convective rolls 

1 km

2 km 4 km

500 m

> 4 km x 4 km 



  

“Tenets” of convective-fields 
simulation

 Control of numerical viscosity: not every dissipative 
numerics has adequate implicit LES property. 

 Awareness of the numerical model design; e.g., 
avoidance of a first-order dissipative numerics, and 
ad-hoc filters. 

 Verification of the adequacy of subgrid-scale models 
using convective benchmarks 

 Skepticism for the ``eye-pleasing’’  convective 
structures appearing in large-scale cloud-resolving 
simulations



  

Conclusions
 Cellular convection simulated with meso- and large-

scale models may be only a spurious result of the 
effective anisotropic viscosity 

 Implicit numerical viscosity and dispersion are well 
known. There appears to be a need for appreciating 
``implicit numerical topology’’ while analyzing under-
resolved convective structures and cloud coverage

 Non-oscillatory forward-in-time (NFT) methods based 
on MPDATA advection appear convenient for cloud-
resolving simulations, as they: 

i) do not depend on explicit subgrid-scale models;
ii) do not require filters for numerical stability; and 
iii) are numerically isotropic
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