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`Turbulence is the last great unsolved problem of classical physics’
- Richard Feynman (or maybe Einstein, or Heisenberg, or Sommerfeld)

`I am an old man now, and when I die and go to heaven there are two matters on which I hope
for enlightenment. One is quantum electrodynamics, and the other is the turbulent motion of
fluids. And about the former I am rather optimistic.’
- Horace Lamb (or maybe Einstein, or Heisenberg)
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Turbulence is important and hard!!

Turbulent transport:  
Quantifying the role of coherent structures



What is “the turbulence problem”?
what are the characteristics of small-scale turbulent motions, how do
these depend on the properties of the large-scale motions from which
they derive, and knowing them, how can we model the transport of scalar
and vector quantities, such as concentration, energy, or momentum?

Two components to this problem:

Transport – fluid parcels, “mixing” on
continuum scale (forward and inverse cascade)

Dissipation – homogenization within/between
parcels, mixing on molecular scale



Spectra:  all phase information lost
     model of transport in spectral space

Kolmogorov (1941):

•  Fluid instabilities produces ever smaller scales from large scale motions
   Big whirls have little whirls, which feed on velocity, and little whirls have lesser whirls, and
    so on to viscosity (Richardson 1922 after Jonathan Swift)
•  In steady state, energy at any size scale depends only on injection/dissipation
    rate and size scale -- spectral slope by dimensional analysis
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Coherent Structures:  all about phasing
        transport in physical space?

How to objectively define coherent structures?
How to use them in a transport model?

!



Molecular transport (Maxwell 1866): 
Random molecular motions yield

– viscosity by the transport of net momentum
– conductivity by the transport of net energy
– diffusion by the transport of molecular identity

Chapman – Enskog method:
properly takes into account nonequilibrium particle distribution functions
due to the presence of the background variations – transport occurs because
          (distribution is nonMaxwellian)f ! f
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Dynamic Viscosity

Transport of x-momentum: 



The turbulence problem:
How to determine the velocity fluctuations from knowledge of the large scale flow
(the closure problem).
How to mix – provided by elastic collisions in molecular transport
(understanding the interface between continuum and molecular dynamics)

Prandtl’s answer (as quoted by Bradshaw 1974)
• typical values of the fluctuating velocity components are each proportional to

where l is the mixing length (Mischungsweg)
• l “may be considered as the diameter of the masses of fluid moving as a whole in

each individual case; or again, as the distance traversed by a mass of this type
before it becomes blended in with neighboring masses”

•  l is “somewhat similar, as regards effect, to the mean free path in the kinetic
theory of gases”

–

l !U !z

Mixing length theory of turbulent transport (Prandtl 1925): 
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1. If turbulent motions were strictly random, turbulent viscosity would be proportional
the average magnitude of the velocity perturbations

–  It is the coherent motions that are key, phase relations are critical

2. Turbulent transport requires a “mixing length” – turbulent mean free path
–  Must understand the interface between continuum and molecular dynamics
    to understand where in the flow the transported quantity is deposited

Formulate a statistical description of turbulent coherent structures,
Lagrangian dynamics in their presence, and mixing between parcels



Why the emphasis on coherent structures? 
Example: Farge, M., Pellegrino, G., & Schneidr, K. 2001, Phys Rev Lettt 87, 054501

Yoshimatsu, K., et al. 2007, Comp Phys and New Perspectives in Turb, p. 235 
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• 10243 incompressible homogeneous isotropic turbulence
(Earth Simulator)

• Wavelet filtered (largest 2.9% coefficients retained)

• Filtered flow contains 99.7% of the energy
and 81.0% of the enstrophy

• Strong scale-by-scale correlation between velocity field
induced by coherent vortices and the total velocity

Isosurfaces:   Total vorticity Coherent vorticity Incoherent vorticity



La Porta et al. 2001, Nature, 409, 1017

Lagrangian statistics in turbulent flows:
• Velocity measurements follow a Gaussian distribution 
• For small temporal increments velocity-difference PDFs are highly nonGaussian

Laboratory water flow with Reynolds
number of up to 63000

Acceleration up to 1500g measured

Δτv(t) = v(t+τ) -v(t)



Mordant, N., Lévèque, E., & Pinton, J.-F.
Phys Fluids 2006

• Tank radius 10cm (9 liter volume) filled with water
• Counter rotating disks (9.5cm diameter, 18cm separation)
• 250µm diameter 1.06 g/cm3 tracer particles (smaller than Taylor microscale)
• Beam width at center of volume (no mean flow) 10 cm 
  (larger than the integral scale -- sample full range of Lagrangian motions)
• Total number of tracers small (less than two in sample volume at one time)



Mordant, N., Lévèque, E., & Pinton, J.-F.
Phys Fluids 2006

Δτv(t) = v(t+τ) -v(t)
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Vorticity:
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Point vortex flow:
(two-dimensional flow)
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Point vortex simulations:

Every 250 time steps shown

Each vortex advected in the flow field of all the others.
Reduction of continuum equations to n-body interactions.
Merger of close vortices
Stirring by vortex creation 
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• Like sign vortices
  orbit
• Oppositely signed
   vortices translate
• Scattering leads to
  preferential merger
  of oppositely signed
  pairs



Particle trajectories in point – vortex model:

‘Trapping events’ (Biferale et al. 2005) are common,
have range of frequencies, and are best seen at high
temporal resolution (small temporal increment)

Every 125 time steps shown

Every 500 time steps shown



Velocity and acceleration distributions in point – vortex model:
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Dependence on temporal increment τ:
Δτv(t) = v(t+τ) -v(t)
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Bivariate transformation of random variables:

Let x and y be independent random variables with probability densities P(x) and P(y)
and joint probability density P

xy
(x, y) = P(x)P(y)

Let                    and                     be functions of the random variables with inverse
functions 

u = f (x, y) v = g(x, y)

x = h
1
(u,v) and y = h

2
(u,v)

Then the joint probability density of u and v is Puv (u,v) = Pxy (h1,h2 )
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Example:
Consider two Gaussianly distributed independent random variables each with a
Mean value of zero and variance equal to one:
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To derive the probability density of their product, let               and
with inverses 

u = xy v = y

x = u / v  and  y = v



The joint probability density of u and v is then 
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K0 is the lowest order modified Bessel 
function of the second kind 
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Monte Carlo vs. analytic probability
density for the Gaussian product N1N2

u = xy



Evidence for vortical motion:

logP(u
x
)
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Laboratory data

Point vortex model

Evidence of vortical motion
OR
The projection of any randomly oriented
 vector uniformly distributed in direction
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Velocity around a single point – vortex:
When radial distance to vortex is 
sampled randomly in the plane:
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Bivariate transformation of random variables:
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Velocity in field of randomly 
placed point – vortices:

P r( ) = 2!nre"!nr
2

• nearest neighbor distance r
• n is vortex field number density

Keeping only nearest 
neighbor contribution:
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Velocity in field of randomly 
placed point – vortices of random amplitudes:

P r( ) = 2!nre"!nr
2 nearest neighbor

as before
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where K and E are the complete elliptic integrals of the first and second kind
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Gaussianly 
distributed
amplitudes

P !( )  uniformly distributed



Two important physical contributions to the velocity difference:

Creation of new 
vortices in domain:

Advection over 
temporal increment τ
by nearest neighbor:
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Velocity difference in field of randomly 
placed point – vortices

Velocity in field of randomly 
placed point – vortices of random amplitudes



 

P(a
x
)!

"t 2 /3

a
x

5 /3
a0 + a1n

"t
a
x

#

$%
&

'(

2 /3

+ a2n
2 "t
a
x

#

$%
&

'(

4 /3

+!

)

*
+
+

,

-
.
.

P(a
x
) =

1

!"
1
"
2

K
0

a
x

2

"
1
"
2

#

$
%

&

'
(

u(t
0
) = u

nn
+ N

1

u(t
0
+ ! ) = u

nn
+ N

1
(1+ N

2
)

u(t
0
+ ! ) " u(t

0
) = N

1
N
2

Gaussian (uncorrelated)

with NO fitting parameters!

P(u
x
) =

2

! 3

1

u
x

2
+ 2!n" 2

K
2!n" 2

u
x

2
+ 2!n" 2

#

$%
&

'(
) E

2!n" 2

u
x

2
+ 2!n" 2

#

$%
&

'(
*

+
,

-

.
/

Experimental data

Gaussian (correlated)



Implications:

•  Lagrangian statistics are dominated by noise in the core and nearest neighbor
    contributions in the wings – two-dimensional in the plane perpendicular to
    the closest vortex filament

•  As the temporal increment τ → 0 the velocity difference
    probability density function approaches the new vortex nearest neighbor
    velocity pdf, because changes in the flow field resulting from new vortex
    creation overwhelm contributions from advection by existing filaments

NEW vorticity changes do not have to be big (pdf normalized by rms)

•  Lagrangian tracers randomly sample a random collection of vortices

•  Random stirring mimics effects of vortex stretching



Toward a transport model:

1. Can we model (analytically and experimentally) transport using the
statistics of Lagrangian trajectories in a point vortex flow?

2. Can we objectively (interactively) coherent vortical structures
simulations of real three-dimensional turbulence?

3. Can we relate these statistics to the large scale flow?

4. Can we use these in place of point vortices in a transport model?


