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it’s all around, . . . and inside us!

Leonardo da Vinci (c. 1500)

• River flow, pipe flow, flow from a
faucet, . . .

• Clouds, smoke, . . .

• Wakes behind boats, golf balls, bikers,
cars, airplanes . . .

• Nuclear fusion, stars, . . .

• Blood flow in heart and large arteries
(R ≈ 20, 000 in aorta!)



Reynolds 1883: turbulence in pipe flow



Navier-Stokes equations

3D velocity field v(x, t):

∇ · v = 0

∂tv + ∇ · (vv) + ∇p =
1

R
∇2v

Control parameter: Reynolds number

R ≡ non-dimensional velocity

1

R
≡ non-dimensional viscosity



Simple geometries, simple flow?

Pipes, Channels plane Couette

Laminar solutions: v = (1− y2)x̂ v = y x̂

Linearly stable yet: R . 2, 000 R . 350



Turbulence in channel flow

Front

Side

Top

Green, M. A., Rowley, C. W. & Haller, G.

Detection of Lagrangian coherent structures in three-dimensional turbulence,

J. Fluid Mech., 572, 2007, 111-120.



Classical statistical approach to Turbulence

v(x, t) ‘random’ ⇒ ensemble average 〈v〉

∇ · 〈v〉 = 0

∂t〈v〉+ ∇ · (〈v〉〈v〉) + ∇〈p〉 =
1

R
∇2〈v〉 −∇ · 〈vv〉

‘Closure problem:’ Reynolds stress 〈vv〉 =?!



〈vv〉 modeling

• [Prandtl-von Karman]
Turbulence = collisions of eddies?

→ eddy viscosity: 〈vv〉 ≈ −νT

(
∇〈v〉+ ∇〈v〉T

)
νT ? mixing length, Smagorinsky, . . .

• [Richardson-Kolmogorov]
Turbulence = Cascade of energy from large to small scales?

scale-similarity, inertial range, return-to-isotropy, . . .

→ K-Epsilon νT , Dynamic model, RANS, LES, . . .

• Walls?! Ouch!

• v random? coherent structures!
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Turbulence is controlled by boundary conditions
(with apologies to Kolmogorov and Clay Institute)



What are coherent structures?

How do they fit with classical models of turbulence?

?
About 50 years of a posteriori, qualitative studies
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Streaks with 100+ z-spacing

Kline, Reynolds, Schraub & Runstadler, JFM 1967

(diagram from Smith & Walker, 1997)



Near wall coherent structures

John Kim, http://www.turbulence.ucla.edu/



Characteristic near-wall coherent structure

Derek Stretch, CTR Stanford, 1990

Streaks + staggered quasi-streamwise vortices: why?



Self-Sustaining Process (SSP)

O(1/R) O(1/R)

O(1)

Streaks

Streak wave
mode (3D)

Streamwise

self−interaction
nonlinear

U(y,z)
instability of

Rolls

advection of
mean shear

WKH 1993, HKW 1995, W 1995, 1997



SSP theory −→ SSP method

Construction of Exact Coherent States from SSP

(‘Full’ NSE, Newton’s method)

PRL 1998, JFM 2001, PoF 2003



Laminar Couette flow: u=0 & u=-0.5
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SSP: Streamwise Rolls create Streaks

−1 0 1 2 3 4 5
0

0.5

1

1.5

Fr

Wx



SSP: Rolls create Streaks

−1 0 1 2 3 4 5
0

0.5

1

1.5

Fr

Wx



SSP: Rolls create Streaks

−1 0 1 2 3 4 5
0

0.5

1

1.5

Fr

Wx



SSP in action: Subcritical Bifurcation from Streaks
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SSP: Self-Sustained! 3D Lower branch

−1 0 1 2 3 4 5
0

0.5

1

1.5

Fr

Wx



SSP: Self-Sustained! 3D Lower branch

−1 0 1 2 3 4 5
0

0.5

1

1.5

Fr

Wx



SSP: Bifurcation from Streaks

−1 0 1 2 3 4 5
0

0.5

1

1.5

Fr

Wx



SSP: Bifurcation from Streaks

−1 0 1 2 3 4 5
0

0.5

1

1.5

Fr

Wx



SSP: Self-Sustained! 3D Upper branch
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SSP: Self-Sustained! 3D Upper branch
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Homotopy

Free-Free Couette (FFC) → Rigid-Free Poiseuille (RFP)

µ = 0→ 1

BC : (1− µ)
du

dy
+ µu = 0

Flow : UL(y) = y + µ

(
1

6
− y2

2

)



FFC −→ RFP
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Poiseuille traveling wave!



Poiseuille traveling wave!



SSP, ECS: Generic

• structurally stable, dynamically unstable

• Plane Couette and Channel, free-slip, no-slip, any-slip!

• Pipe:
Faisst & Eckhardt PRL 2003,
Wedin & Kerswell JFM 2004,
Hof et al. Science 2004,
Pringle & Kerswell PRL 2007



Optimum Traveling Wave: 100+ !

min Rτ = 2h+ = 44 for L+
x = 274, L+

z = 105 just right!



‘Out-of-the-blue-sky’ (saddle-node)
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Lower branch does NOT bifurcate from laminar flow!
RRC (α, γ) = (1, 2), (1.14, 2.5), up to R≈ 60 000 + asymptotics



Vortex visualization

ωx 2Q= ∇2p = ΩijΩij − SijSij



Upper and Lower branches

0.6 max(Q), (α, γ) = (1.14, 2.5).
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Upper and Lower branches no-slip Couette
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Steady State & ‘turbulent’ (by Jue Wang & John Gibson) in RRC, R = 400, (α, γ)=(0.95,1.67)



Upper branches ←→ Turbulence (no-slip Couette)
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LB eigenvalues, (α, γ) = (1.14, 2.5), (1, 2), R = 1000
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LB ←→ Transition (α, γ) = (1.14, 2.5), (1, 2), R = 1000
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Lower branch R = 1000

0.6 max(Q), R = 1000 , (α, γ) = (1.14, 2.5).



Two states of fluid flow

Laminar

Turbulent



Separatrix, transition threshold
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Unstable Coherent States!

Laminar

Turbulent



PCF data (R = 400)
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Periodic solutions in HKW (1.14, 1.67) by Viswanath, JFM 2007 & Gibson (TBA)



Visualizing State Space ( 105 dof’s)
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Visualizing State Space (PCF, R=400)
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Conclusions

• Turbulence is not the random collisions of fluid ‘molecules’

• Turbulence is not a cascade of energy from large to small
scales

•• ECS= 3D Traveling wave and periodic solutions of
Navier-Stokes

• ECS: upper ≈ turbulence, lower ≈ transition

• ECS unstable manifolds: low dimensional(?) → control

• Asymptotic theory of lower branch solutions? Proof?
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