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it's all around, ...and inside us!

o River flow, pipe flow, flow from a
faucet, ...

e Clouds, smoke, ...

e Wakes behind boats, golf balls, bikers,
cars, airplanes ...

e Nuclear fusion, stars, ...

e Blood flow in heart and large arteries
(R ~ 20,000 in aorta!)
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Leonardo da Vinci (c. 1500)
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Reynolds 1883: turbulence in pipe flow




Navier-Stokes equations

3D velocity field v(x, t):

V.-v=0

1
Ov+ V- (w)+ Vp= Ev%

Control parameter: Reynolds number

R = non-dimensional velocity

= non-dimensional viscosity
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Simple geometries, simple flow?
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Pipes, Channels plane Couette
Laminar solutions: v = (1 — y?)& v =yX

Linearly stable yet: R < 2,000 R < 350



Turbulence in channel flow

Side

Green, M. A, Rowley, C. W. & Haller, G.
Detection of Lagrangian coherent structures in three-dimensional turbulence,
J. Fluid Mech., 572, 2007, 111-120.



Classical statistical approach to Turbulence

v(x, t) ‘random’ = ensemble average (v)
V-(v)=0

Oely) + V- (W)()) + V{p) = 2V2w) ~ V- (w)

‘Closure problem:" Reynolds stress (vv) =7!
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(vv) modeling

[Prandtl-von Karman]
Turbulence = collisions of eddies?

— eddy viscosity: (vwv) &~ —v7 (V{v) + V(v)7)
v1? mixing length, Smagorinsky, ...

[Richardson-Kolmogorov|
Turbulence = Cascade of energy from large to small scales?

scale-similarity, inertial range, return-to-isotropy, ...

— K-Epsilon v1, Dynamic model, RANS, LES, ...
Walls?! Ouch!

v random? coherent structures!



Turbulence is controlled by boundary conditions
(with apologies to Kolmogorov and Clay Institute)




What are coherent structures?

«O>r «Fr <

it
v



What are coherent structures?

How do they fit with classical models of turbulence?



What are coherent structures?

How do they fit with classical models of turbulence?

?

About 50 years of a posteriori, qualitative studies



Streaks with 100" z-spacing

hydrogen hydrogen Flow
bubble wire bubble lines

low-speed
wall streaks

high-speed i o
regions LA
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Kline, Reynolds, Schraub & Runstadler, JFM 1967

(diagram from Smith & Walker, 1997)



Near wall coherent structures

John Kim, http://www.turbulence.ucla.edu/



Characteristic near-wall coherent structure

_ High stress patch

Low speed streak

High stress patch Tt

Derek Stretch, CTR Stanford, 1990

Streaks + staggered quasi-streamwise vortices: why?




Self-Sustaining Process (SSP)

Streaks

o)
advection of, instability of
mean she U(y,z)

Streamwise Streak wave
Rolls mode(3D)

O(1/R) . ~ oam)

nonlinear
self-interaction

WKH 1993, HKW 1995, W 1995, 1997



SSP theory — SSP method

Construction of Exact Coherent States from SSP

(‘Full’ NSE, Newton's method)

PRL 1998, JFM 2001, PoF 2003



Laminar Couette flow: u=0 &

Fr=0.000 Wx=0.000




SSP: Streamwise Rolls create Streaks

Fr=1.000 Wx=0.000
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SSP: Rolls create Streaks

Fr=3.000 Wx=0.000
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SSP: Rolls create Streaks

Fr=5.000 Wx=0.000
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SSP in action: Subcritical Bifurcation from Streaks

Fr=5.000 Wx=0.000
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SSP in action: Subcritical Bifurcation from Streaks

Fr=4.984 ‘Wx=0.030
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SSP in action: Subcritical Bifurcation from Streaks

Fr=4.978 Wx=0.060




SSP in action: Subcritical Bifurcation from Streaks

Fr=4.950 Wx=0.080




SSP in action: Subcritical Bifurcation from Streaks

Fr=4.912 Wx=0.120




SSP in action: Subcritical Bifurcation from Streaks

Fr=4.861 Wx=0.150




SSP in action: Subcritical Bifurcation from Streaks

Fr=4400 Wx=0.300




SSP in action: Subcritical Bifurcation from Streaks

Fr=3488 Wx=0450




SSP in action: Subcritical Bifurcation from Streaks

Fr=2.008 Wx=0.600




SSP: Self-Sustained! 3D Lower branch

Fr=0.000 Wx=0/772




SSP: Self-Sustained! 3D Lower branch

Fr=0.000 Wx=0/772




SSP: Bifurcation from Streaks

Fr=-0808 Wx=0.900




SSP: Bifurcation from Streaks

Fr=-0488 Wx=1.050




SSP: Self-Sustained! 3D Upper branch

Fr=0.000 Wx=1.118




SSP: Self-Sustained! 3D Upper branch

Fr=0.000 Wx=1.118




Homotopy
Free-Free Couette (FFC) — Rigid-Free Poiseuille (RFP)
uw=0—1

BC: (17u)—u+,uu:

1 2
Flow :  Ul(y)=y+ 1 < — y)



FFC — RFP

mu=0.0 R=142




FFC — RFP

mu=0.2 R=145




FFC — RFP

mu=04 R=152




FFC — RFP

mu=06 R=166




FFC — RFP

mu=0.8 R=182




Poiseuille traveling wave!

mu=1.0 R=263




Poiseuille traveling wave!

mu=1.0 R=263




SSP, ECS: Generic

e structurally stable, dynamically unstable
e Plane Couette and Channel, free-slip, no-slip, any-slip!
e Pipe:

Faisst & Eckhardt PRL 2003,

Wedin & Kerswell JFM 2004,

Hof et al. Science 2004,

Pringle & Kerswell PRL 2007
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Optimum Traveling Wave: 1007 !

-2 -15 -1 05 0 05 1 15 2
z

N\
High stress patch

min R, = 2h™ =44 for L} =274, L} =105

just right!



‘Out-of-the-blue-sky' (saddle-node)
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Lower branch does NOT bifurcate from laminar flow!

RRC (o, v) = (1, 2), (1.14, 2.5), up to R~ 60000 4 asymptotics



Vortex visualization

R=21% R=218
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Wx 2Q: Vzp = QUQU — SUSU



Upper and Lower branches
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0.6 max(Q), (a,7v) = (1.14,2.5).




Upper and Lower branches

R=225 R=225

-0.5

0.6 max(Q), (a,7v) = (1.14,2.5).



Upper and Lower branches

R=250 R=250

0.6 max(Q), (a,7v) = (1.14,2.5).



Upper and Lower branches

R=300 R=300

0.6 max(Q), (a,7v) = (1.14,2.5).



Upper and Lower branches

R=350 R=350

0.6 max(Q), (a,7v) = (1.14,2.5).



Upper and Lower branches

R=400 R=400

0.6 max(Q), (a,7v) = (1.14,2.5).



Upper and Lower branches

R=400 R=1386

0.6 max(Q), (a,7v) = (1.14,2.5).



Upper and Lower branches

R=400 R=2938

0.6 max(Q), (a,7v) = (1.14,2.5).



Upper and Lower branches

R=400 R-10454

0.6 max(Q), (a,7v) = (1.14,2.5).



Upper and Lower branches

R=400 R=20073

0.6 max(Q), (a,7v) = (1.14,2.5).



Upper and Lower branches

R=400 R=57250

0.6 max(Q), (a,7v) = (1.14,2.5).



Upper and Lower branches no-slip Couette

Dissipation Rate
w

3
Energy Input Rate

Steady State & ‘turbulent’ (by Jue Wang & John Gibson) in RRC, R = 400, («, v)=(0.95,1.67)
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pper branches «— Turbulence

(no-slip Couette)

solid: Turbulent (avg t=2000), dash: fixed point
Mean and RMS velocity profiles
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LB eigenvalues, (o, ~) = (1.14,2.5), (1,2), R = 1000

0.05

Only 1 unstable eig!



Dissipation Rate
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Energy Input Rate
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Lower branch R = 1000

t= 300 t= 200
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0.6 max(Q), R = 1000, («a,v) = (1.14,2.5).



Two states of fluid flow

Turbulent



Separatrix, transition threshold
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Unstable Coherent States!

Laminar



PCF data (R = 400)
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Periodic solutions in HKW (1.14, 1.67) by Viswanath, JFM 2007 & Gibson (TBA)



Visualizing State Space ( 10° dof's)

RRC, R=400, Gibson, Halcrow, Cvitanovic, JFM to appear arxiv.org/0705.3957



Visualizing State Space (PCF, R=400)
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RRC, R=400, Gibson, Halcrow, Cvitanovic, JFM to appear arxiv.org/0705.3957
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Conclusions

Turbulence is not the random collisions of fluid ‘molecules’

Turbulence is not a cascade of energy from large to small
scales

Multiscale Exact Coherent States (ECS) do the transport

ECS= 3D Traveling wave and periodic solutions of
Navier-Stokes

ECS: upper = turbulence, lower a transition
ECS unstable manifolds: low dimensional(?) — control

Asymptotic theory of lower branch solutions? Proof?



