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Sources of Stratospheric Turbulence
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Sources of Stratospheric Turbulence

Good News:

We know the processes that are responsible for sratospheric
turbulence: wind shear and gravity-wave breaking.

Bad News:
1. Current forecast models cannot resolve them.

2. Resulting turbulence is challenging to model (layered,
non-stationary, anisotropic, inhomogeneous, fossil events
precondition future events, gravity waves provide non-local
unresolved momentum transfer).
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Sources of Stratospheric Turbulence
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ADA tasks: 1. Predict likelihood and nature of turbulence outbreaks
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ADA tasks: 1. Predict likelihood and nature of turbulence outbreaks

a. Model gravity-wave generation,
propagation, and breakdown using
an upgraded version of MWFM.

@@M&ﬂ b. Make probabilistic

estimates of turbulent-
layer properties.

c. Do both a and b.
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ADA tasks: 1. Predict likelihood and nature of turbulence outbreaks
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ADA tasks: 1. Predict likelihood and nature of turbulence outbreaks
2. Estimate impact on resolved-scale dyamics
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Wave clouds over Ireland & Scotland, 2003 (Aqua MODIS, NASA/GSFC)

CoRA, NWRA, Inc.

Joe Werne

Nashville, TN, June 2005



Convection induced waves over the Indian Oean, 2003 (MISR, NASA/GSFC/LaRC/JPL)

Nashville, TN, June 2005 Joe Werne CoRA, NWRA, Inc.




Noctilucent Clouds, Kustavi, Finland, 1989 (photo by Pekka Parviainen)
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3km Deep Mixing Layer Triggered by a Gravity Wave

Kelley, Chen, Beland, Woodman, Chau & Werne, GRL (2005)
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3km Deep Mixing Layer Triggered by a Gravity Wave

Kelley, Chen, Beland, Woodman, Chau & Werne, GRL (2005)
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Unresolved Gravity Waves: Are They Important?

Examples mentioned previously all involve gravity waves:
- DC-8 cargo plane with missing engine and 12’ of wing.

- U2 incidents involving aborted missions, loss of aircraft and
death of a pilot.

- Woman killed on United flight over the Pacific Ocean when
the aircraft dropped 1000 feet.

Gravity waves also play important roles in atmospheric dynamics:

- The mesopause (~90km altitude) is colder in the summer
than in the winter as a result of meridional circulations forced by
overturning gravity waves.

- Gravity waves also play an important role in the quasi-biennial
oscillation (QBO), a quasi-periodic oscillation of the zonal wind
with a period that varies from 22 to 34 months.
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December 29, 1997
Jet Hits Turbulence; 110 Hurt and

a Woman Dies

A United Airlines jumbo jetliner with
393 people aboard hit severe air
turbulence over the Pacific Ocean on
Sunday night, killing one Japanese
woman and injuring 110 other
passengers.

Passengers and serving carts were flung
to the ceiling as the plane dived 1,000
feet when it flew into the turbulence at
33,000 feet, officials said.

The plane, flight 826 bound for Honolulu



What is an internal gravity wave?

equations of motions for a compressible, rotating atmosphere

du
(1)

(2)

(3)

(4)

mean state:  p = poe—(z—Zo)/H
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What is an internal gravity wave?

solving linear perturbation equations in the WKB approximation gives:
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What is an internal gravity wave?

solving linear perturbation equations in the WKB approximation gives:

wave amplitude
grows with z
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solving linear perturbation equations in the WKB approximation gives:
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What is an internal gravity wave?

solving linear perturbation equations in the WKB approximation gives:

1 Gravity Waves

1.1 Dispersion Relation
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1.2 Polarization Relations
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where w = w — ku — [V s the wave’s intrinsic frequency.




What is an internal gravity wave?

solving linear perturbation equations in the WKB approximation gives:

1 Gravity Waves

1.1 Dispersion Relation

o N+ ) + (m? + )

1
k2+€2—|—m2—|—m

1.2 Polarization Relations

~ ~

P u

W2 — f2 Gk+ift ol —ifk

where w = w — ku — [V s the wave’s intrinsic frequency.

note: 1. evanescence (internal reflection) when m?< 0
2. critical levels (wave/mean-flow interaction)
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What is an internal gravity wave?

solving linear perturbation equations in the WKB approximation gives:

1 Gravity Waves

1.1 Dispersion Relation

o N+ ) + (m? + )

1
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1.2 Polarization Relations
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where w =W —

note: 1.e ence (internal reflection) when m?< 0
2. critical levels (wave/mean-flow interaction)
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What is an internal gravity wave?

solving linear perturbation equations in the WKB approximation gives:

group velocity:

( ) Ow Ow Ow
Cor:Coy:C92) =\ K O1 Om

phase velocity:
w

k% 4 [2 + m?

(k,l,m)

(Ccpa Cy s Cz) —
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Wave / mean-flow interaction

wave amplitude grows with z,
eventually leading to nonlinear
effects and turbulence, depositing
momentum into the mean flow,
decelerating the upper level winds.

Cqg,M, W 1

critical-level absorption

Cg, M, W |

wave amplitude grows with (0 *
near critical level and breaking
occurs, with wave depositing
momentum into background,
accelerating the low-level winds.
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Wave / mean-flow interaction

wave amplitude grows with z,
eventually leading to nonlinear
effects and turbulence, depositing
momentum into the mean flow,
decelerating the upper level winds.

Cqg,M, W 1

critical-level absorption

Cg, M, W |

The net effect is to act to wave amplitude grows with O

near critical level and breaking
reverse the mean shear. occurs, with wave depositing

momentum into background,
accelerating the low-level winds.
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Wave / mean-flow interaction

This process operates in the QBO - an oscillation of the mean zonal wind
in the equatorial lower stratosphere with a period from 22 to 34 months.
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Wave / mean-flow interaction

Observed Temperature (January)

Wave / mean-flow interactions :’—/__,_,,/\"

are also important in the 150K
mesopause region (~90km).

Pressure (mb)

The summer mesopause is
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Adiabatic cooling and residual
circulations driven by gravity
waves are responsible.

PRESSURE (mb)
w
]
|

60°N

from Fels (1987)




Modeling unresolved gravity-wave effects

Waves contribute organized, coherent motions that can have important
dynamical implications.

During field experiments, meso-scale simulations of stratified dynamics often

hint at mountain wave initiation, but subsequent evolution is severely
damped.

In practice, an astute operator will forecast wave dynamics and turbulence
to caution aircraft making field measurements, but not because WRF (MM5)
predicted it, but rather because waves were briefly glimpsed before
unphysically damped by the forecast model.

How to include waves (or, how to put them back) ...




Linear, 2D MWFM-2 response

(a) 3D Flow Across a “Ridgelet”
Wind varies D]gltal

with height
—] 2D Plane

— Hydrostatic LBl Flow Diagram
Mountain Wave Data '
or MIWFM

Mountain Wave
Vector Axis Ridge-Finding

(foitdh oeg:;]izl)to Algorithm Illtomlogical
Data
Global List [NCEP, DAO]

of Ridges

Wind orthogonal
toridge axis

List of Forced
Mountain Waves

20 Hydrostatic Wave Equations

| _ for Propagation and Amplitudes
Ridge Axis

MFWM-2 assumes a 2D ridge and Saturation Criteria
linear, hydrostatic MW propagation.

(Eckermann et al., 2004) Forecast
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Linear, 2D MWFM-2 response

(a) 3D Flow Across a “Ridgelet”
Wind varies Dignal

with height 2D Plane

Hydrostatic T°p°g'aphy F|OW Diagram
Mountain Wave m RS A
VIWFIM

What to do for 3D Flow Across a 3D Hill?
Wind varies umnlu

with height ?? 3D Nonplanar
Nonhydrostatic Data
Mountain Waves ?? [NCEP DAD]

(b) Two-Dimensionalize ,
Wind orthogonal

toridge axis

= ?? No preferred
> . orthogonal axis ?7?

>
4

Ridge |

MFWM-2 assumes a 2D ridge and Saturation Criteria
linear, hydrostatic MW propagation.

Mountain Wave

(Eckermann et al., 2004) Forecast
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Linear, 2D MWFM-2 response

(Linear waves computed by ray tracing)




Convective plume parameterization:

Vertical Body Force Model
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Body Force and Heating GW solutions

u(x,y,z,t) = PE

The spectral solution after the forcings/heatings finish is
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Modeled GWs from mesoscale convective complexes (MCCs) modeled as vertical body forces
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Response from modeled body forces:
Vertical velocities of GWs 30, 60, and 90 min after convective initiation

Z=50 km

Deep, tropical convective systems
efficiently excite GWs

GWs radiate as concentric rings
upwards and away from convective
4200100 0 100 200 £206-100 0100 200 cells in 3D r_10n_|inear numerical
e o models (Piani et al, 2000; Lane et
al, 2001; Horinouchi et al, 2002)
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z=25 km
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Response from modeled body forces:
Vertical velocities of GWs 30, 60, and 90 min after convective initiation

Z=50 km

h

* Deep, tropical convective systems
efficiently excite GWs

GWs radiate as concentric rings
H upwards and away from convective
$200-100 0 100 200 cells in 3D r_10n_|inear numerical
e models (Piani et al, 2000; Lane et
al_2001: Horinouchi et al, 2002)

Extends MWFM formalism to
3D for transient 3D topography
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Bayesian SGS Modeling

Estimate with ensemble runs
or knowledge of F uncertainty

/

/AOO[A|F,Y][Y]F][F]dY

\

resolved by NWP or secondary model
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Bayesian SGS Modeling

Fourier-Laplace GW propagation
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Bayesian SGS Modeling

Fourier-Laplace GW propagation
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Modeling unresolved gravity-wave effects

Wave saturation model:

OT

if wave grows above critica

amplitude, reduce amplituc Oz
marginal convective instabi

Critical wave with A=1 —

Turbulent KE resulting is
equal to wave KE reduction.
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Gravity-Wave Breaking Simulation

0=0,cos(k-x-wt)
U=U_,sin(k-x-wt)

— Re 'V’°u—VP+RiO?
Pe V20

0
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Gravity-Wave Breaking Simulation

gravity-wave asymptotic linear stability

0=0,cos(k-x-wt)
U=U_,sin(k-x-wt)

Lombard & Riley, Phys. Fluids, 1996

— Re 'V’°u—VP+RiO?
Pe V20

0
NCAR TOY-08, July 2008 Joe Werne NWRA/CoRA




Gravity-Wave Breaking Simulation

gravity-wave asymptotic linear stability

0=0,c0s(k-x-wt)
U=U,sin(k-x-wt)

Lombard & Riley, Phys. Fluids, 1996

— Re 'V’°u—VP+RiO?
Pe V20

0
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Gravity-Wave Breaking
Re=10* Pr=1 A=1.1
2400 x 1600 x 800

3D volume rendering via ezViz
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Gravity-Wave Breaking
10.95 Re=10* Pr=1 A=1.1
2400 x 1600 x 800

3D volume rendering via ezViz
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Gravity-Wave Breaking
Re=10* Pr=1 A=0.9
2400 x 1600 x 800

3D volume rendering via ezViz
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Gravity-Wave Breaking
292 89 Re=10* Pr=1 A=0.9
2400 x 1600 x 800

3D volume rendering via ezViz
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3D volume rendering via ezViz
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3D volume rendering via ezViz




3D volume rendering via ezViz
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GW Breaking Simulations
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Boulder, TOY 2008

Hi-Res Wind-Shear Simulations: DNS-LES Comparisons
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Hi-Res Wind-Shear Simulations: DNS-LES Comparisons

1. Amplitude drops by 70% for both A=1.1 AND A=0.9 for 72° wave (N/3.2).
2. Preliminary result: A=0.9 does not budge for 84° wave (N/10).

©=N/3.2, a=0.9 w=N/3.2, a=1.1 w=N/10, a=1.1

v L \
v L
v

primary GW *

all else
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Model Time
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Conclusions

1. Gravity waves are important often-unresolved processes in NWP models.
2. GWs engender turbulence and couple to mean flows when overturning and breaking occurs..

3. Gravity wave breaking results after amplification in the atmosphere due to a) critical-level
absorption and b) upward propagation.

4. The effects of GWs are estimated by linear wave-propagation codes operating on NWP output
that does not resolve them explicitly or accurately.

5. Nonlinear effects must be modeled in wave-propagation codes, and currently convective
instability is used as the criteria of choice.

5. DNS results for turbulent GW breaking indicate that convective instability under-predicts the
degree of wave saturation.

Ongoing Work

1. Explore wave saturation as a function of wave parameters.
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