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Water vapor: causes about 36—70% of the greenhouse effect on Earth
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Precipitation: any product of the condensation of atmospheric water
vapor that is deposited on the earth's surface.

Surface water and ground water, etc
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Cloud microphysics: the study of the physical processes that lead to
the formation, growth and precipitation of cloud




Two bin (spectral) microphysics schemes have been coupled into the
Weather Research Forecast (WRF) model. They are powerful and
valuable tools for investigating microphysical processes inside clouds
and dynamics feedbacks of clouds.

All kinds of cloud microphysical processes (condensation, collision-
coalescence, breakup, deposition, sublimation, collisions between
different species, etc) have been incorporated in mixed phase
scheme. All warm rain processes and aerosol features have been
implemented in aerosol warm rain scheme.

Multi-moments conservation method (Tzivion et al. 1987) is used to
calculate the evolution of the size and mass spectrum of the different
cloud particles for each time step.

Two ideal 2D-squall line cases using mixed phase scheme with clean
and polluted CCN concentrations and one ideal LES case using aerosol
warm rain scheme were simulated.
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Total precipitation {mm)

Total precpitation (mm)

Domain average rain_total amount (mm)
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Polluted case generates more ice phase and total precipitation
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Mixed phase bin scheme works for strong convective system

Results verify recently proposed hypothesis

Pristine

- Direction of airflow
* Ice & snow crystals
4 Graupel or small hail
¢ Raindrop
o Larger cloud droplet
* Small doud droplet
- Smaller cloud droplet
- Aerosol particles
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Graphics by Robert Simmon, NASA (courtesy of Rosenfeld)

Aerosol scavenging can be investigated by the aerosol scheme

Changes of aerosol (CCN) affect the dynamics and thermodynamics
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