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A Vortex/Radial Basis Function Algorithm for the Barotropic
Vorticity Equation on a Rotating Sphere

Vortex methods are highly adaptive because degrees of freedom are located only where there is vorticity.
Point vortices have been replaced by vortex blobs, typically Gaussians of radius, in Cartesian geometry, but
persisted on the sphere because an analytical solution for the Poisson equation was known only for point
forcing. Recently, we found an analytical solution for the Poisson equation on the sphere with Gaussian
forcing [?]. This allowed us to develop an efficient Gaussian vortex method for solving the barotropic vorticity
equation on the sphere. Traditionally, vortex methods avoid the cost of inverting an interpolation matrix by
cheating. Our model employs full RBF interpolation and is therefore spectrally-accurate until unresolvable
fine scales develop. One goal is to compare the merits of interpolation versus quasi-interpolation. The model
uses a panel technique to adaptively add and subtract Gaussian vortices so as to maintain resolution even
when thin filaments have developed. Our intermediate-term goal is to extend the model to the shallow water
equations.

Radial basis functions (RBFs) are attractive because they are theoretically a “meshless” scheme: grid
points and RBF centers can be clustered around the peaks of solitary waves and thinned in the voids between.
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Radial Basis Function (RBF) Approximation

f(�x) ≈
N∑

j=1

λj φ
(
||�x − �cj||2

)
�x ∈ Rd (1)

φ(r) is the RBF
�cj, j = 1, . . . N are “centers”
λj are “coefficients”

Usually found by interpolation at �xk that may
or may not coincide with the centers.

Under mild conditions on φ, interpolation is
provably solvable even when the interpolation
points and centers are scattered randomly over
an irregularly-shaped domain.

Widely used for scattered interpolation (point
clouds) in computer graphics.
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Table 1: Typical RBF φ

Definition Name

φ(r) ≡
√

r2 + c2 Multiquadrics

φ(r) ≡ 1√
r2+c2

Inverse Multiquadrics

φ(r) ≡ r2 log(r) Thin plate splines

φ(r) ≡ exp(−ε2 r2) Gaussians

φ(r) ≡ r3 Cubic

φ(r) ≡ r5 Quintic

φ(r) ≡ (1 − r)m+ p(r) Wendland functions

(1 − r)+ ≡
{

1 − r, 0 ≤ r ≤ 1,

0, r > 1
[p is a polynomial]

Our work focused on GAUSSIAN RBFs:

φ(r) ≡ exp(−ε2 r2)

on an UNBOUNDED interval.
Define h as the grid spacing (or average grid

spacing).
Absolute width parameter ε is insignificant.
Key parameter is the RELATIVE width pa-

rameter (relative to GRID SPACING):

φ(x; α) ≡ exp

(
−α2

h2
x2

)
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Vortex-RBF Hybrid for Fluid Flow on a Sphere

• Long-term goal: highly-adaptive weather fore-
casting and climate models using radial basis
functions (RBFs)

• Short-term goal: solve the barotropic vortic-
ity equation on the surface of a sphere

[Cartesian coordinates for expository simplic-
ity; ζ is the vorticity; u, v the horizontal cur-
rents, β is the y-derivative of the Coriolis pa-
rameter, ψ is the streamfunction, subscript x
or y or t denotes differentiation with respect to
that coordinate]

ζt + uζx + vζy + βv = 0 [Vorticity Eq.]

u = −ψy, v = ψx

∇2 ψ = ζ [Streamfunction Poisson Eq.]
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Vortex Methods

• RBF strategy is closely related to classical
vortex methods, so a brief review is helpful.

• Point vortex methods approximate vortical
flows by advecting a small number of point
vortices; first triumph was Rosenhead’s (1931)
desktop calculator computation of the insta-
bility of a vortex sheet.

• Defect of point vortices: smooth vortex patches
are approximated by a field of
DELTA-FUNCTION SPIKES

Figure 1: Fig. 4 of Rosenhead (1931)
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Vortex Blobs

• Blob methods represent vorticity by
OVERLAPPING GAUSSIAN VORTICES
(“blobs”)

• Because Gaussians are an important species
of RBFs, vortex blob methods are always an
unacknowledged RBF method.

• Blob centers are advected with the current

• Poisson equation is solved ANALYTICALLY
by superimposing the exact, explicit solution
for a Gaussian forcing

• Blobs need not be of uniform size

• Adaptivity: blobs only where the vorticity
is; in contrast to alternatives, there are NO
DEGREES-of-FREEDOM in the
“DEAD ZONES” of negligible vorticity.

• Blobs not previously applied to the SPHERE
because analytical solution for the Poisson
equation on the sphere with Gaussian forc-
ing was UNKNOWN.
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Solving the Poisson Equation ∇2ψ = ζ with
Gaussian Forcing on the Sphere

1: Expand Vorticity by Interpolation:

ζ(λ, θ) ≈
N∑

j=1

a
ζ
j φj(λ, θ) (2)

2. Solve Poisson for a Gaussian at the NORTH
POLE:

(1 − µ2)Pµµ − 2µPµ = exp
(
−2ε2(1 − µ)

)
− C

where

C =
1

4ε2

{
1 − exp(−4ε2)

}

GENERAL solution follows by SUPERPOSI-
TION & COORDINATE ROTATION

ψ(λ, θ) ≈
N∑

j=1

a
ζ
j ×

P(cos(θ) cos(θj) + sin(θ) sin(θj) cos(λ − λj); ε)
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Three Solutions for P(θ; ε)

(Boyd & Zhou, J. Comput. Phys. 228, no.
13, 4702-4713 (2009).

1. Legendre series is SLOWLY CONVER-
GENT for narrow RBF (ε >> 1), but gives
exact “Gauss constraint” C

2. Matched Asymptotics in Powers of 1/ε2

3. Exact Solution
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Matched Asymptotics for Gaussian-Forced
Poisson Eq. on the Sphere

• Fourth order; for simplicity, only 2d order be-
low

P2,uni =
1

4

1

ε2

{
Ei(r2) + log

{
1 − cos

(r

ε

)}}

+
1

ε4
exp(−r2)

(
1

16
+

1

48
r2

)

where r ≡ εθ.

• Approximation is UNIFORMLY VALID over
entire sphere.

• Perturbation parameter is 1/ε2; very fast con-
vergence

• Outer approximation: point vortex on sphere
to ALL ORDERS:

Pouter ∼ log {1 − cos (θ)}
• Pouter decays GAUSSIAN-FAST to POINT

VORTEX/OUTER APPROX.
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Exact Poisson Solution

ψ(x = cos(θ)) =
1

4ε2

{
1 − exp(−4ε2)

}
log (1 − x)

− 1

4ε2
exp(−4ε2) log

(
1 + x

1 − x

)

+
1

4ε2
E1

(
2ε2 [1 − x]

)

+
1

4ε2
exp(−4ε2) Ei

(
2ε2 [1 + x]

)

E1(z) ≡
∫ ∞

1

exp(−zt)

t
dt =

∫ ∞

z

exp(−y)

y
dy

Ei(z) ≡ γ + log(z) +

∫ z

0

exp(t) − 1

t
dt

Matched asymptotics has advantages:
(i) fewer special functions
(ii) no apparent singularities at south pole
(iii) summable by treecode
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Summing the Poisson Solution

• One charm of the ζ-as-RBF strategy, instead
of an RBF series for ψ, is that ψ is NOT spa-
tially localized even when ζ is:
ψ grows logarithmically away from the forc-
ing; u, v decay only as reciprocal of distance

• “Far field” of ψ summable by Fast Summa-
tions (Fast Multipole Method, Fast Gauss Trans-
form, treecodes)

• Treecodes work well (Krasny and Wang, 2008,
submitted)

• Our analysis is that the Fast Gauss Trans-
form is USELESS for “Near Field” interac-
tions of Gaussian RBFs (Boyd, submitted to
JCP)

• RBF sums (at the moment) are only “semi-
fast”: fast for long-range interactions, but re-
stricted to direct summation for short-range
interactions.
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Grids

• Meshless but not gridless

• For localized vortices, use problem-specific,
advectively-adapted grid

• For global waves, use a Sadourny icosahe-
dral/triangular gird

Figure 2: The icosahedral grid for ν = 5. The twelve vertices of the icosahedron are large yellow balls. They
are connected by red curves that are the edges of the spherical icosahedron. Green spheres mark the ν − 1
grid points on the interior of each edge. The points interior to each spherical triangle, (ν − 2)(ν − 1)/2 for
each face of the icosahedron, are shown as red balls.
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Lagrangian Vortex/RBF Algorithm

• Potential vorticity is CONSERVED on each
moving interpolation point. Relative vortic-
ity from �ζi = �ζabs

i − cos(�θi)

• Calculate a
ζ
j , RBF coeffs. of ζ, by interpola-

tion [matrix solve]

• Solve the ODE system

Dλi

Dt
=

1

sin θi

N∑

j=1

a
ζ
j

∂Pj

∂θ
(λi, θj)

Dθi

Dt
= − 1

sin θi

N∑

j=1

a
ζ
j

∂Pj

∂λ
(λi, θj)

4th order RK requires 4 interpolations/step;
AB3 requires only 1 interpolation/step
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Role of the Relative Inverse Width Parameter

Relative-to-grid-spacing width α = εh is more
pertinent than absolute width ε
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Waves and Adaptation

ut + uux = −cux [Inviscid Burgers]

where c is a constant. A vortex-like scheme:

u
(n+1)
j = u

(n−1)
j + 2τ (−cu

(n)
x,j)

x
(n+1)
j = x

(n)
j + (1/2)τ (u

(n+1)
j + u

(n)
j )

The crucial point is the not the mechanics of
the scheme, but the consequences of different
choices of the linear phase speed c.
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• When c = 0, grid automatically and dynam-
ically adapts to concentrate grid points right
where are needed.

• When c = 1, however, front does moves at
u(x, t) + c. There is no systematic trend in
the movement of the grid points.
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Rossby-Haurwitz Waves on the Sphere

• TRAJECTORIES are CYCLOIDS

• ζ = (1/5) sin(θ) cos(λ − (1/2)t)

• ACCURATE [relative error 8.5× 10−5] even
with no relationship between trajectories &
wave motion
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Vortex Merger
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Figure 3: t=0
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Zoom of Vortex Merger

Dots show peaks of each vortex blob; the blobs
actually overlap

All blobs carry the same sign of vorticity.

Figure 5: Same but zoom of previous solution
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Figure 6: Roll-up of a vortex sheet (Kelvin-Helmholtz instability) on a non-rotating sphere, computed by
our Gaussian RBF vortex blob model.
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Dense Matrix Blues

• The most accurate way to determine λj in

ζ(�x) ≈
N∑

j=1

λj φ
(
||�x − �cj||2

)
�x ∈ Rd

is by SOLVING a DENSE INTERPOLATION
MATRIX problem:

��G�λ = �f

fj = f(�xj)

Gjk = φ([α/h](�xj − �xk)

• COST
O(N3) operations by Cholesky factorization
O(N2) operations per iteration [In contrast,
Fourier or Chebyshev interpolation costs
O(N log2(N))]

• Vortex methods almost never invert matri-
ces (except for Beale (1987)), but instead use
QUASI-INTERPOLATION
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Quasi-Interpolation

A QUASI-INTERPOLANT is an approxima-
tion in which the coefficients are equal to the
values of f(x) at the grid points.

fQI(x) ≡
∑

j

f(xj)ψj(x) (3)

• Gaussians yield O(h2) error [h is grid spacing]

• Beale and Madja (1982) showed that higher
order could be obtained (in any number of di-
mensions) by multiplying Gaussians by poly-
nomials of appropriate degree

Table 2:
This omits a multiplicative factor of αd where d is the spatial dimension. Note that z = (α/h)||x||.

d O(h2) O(h4) O(h6)

1 1√
π

exp(−z2) 1√
π

exp(−z2)(3
2 − z2) 1√

π
exp(−z2)(15

8 − 5
2z

2 + 1
2z

4)

2 1
π exp(−z2) 1

π exp(−z2)(2 − z2) 1
π exp(−z2)(3 − 3z2 + 1

2z
4)

3 1
π3/2 exp(−z2) 1

π3/2 exp(−z2)(5
2 − z2) 1

π3/2 exp(−z2)(35
8 − 7

2z
2 + 1

2z
4)
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• Big accuracy penalty for quasi-interpolation

• Beale (1987) experimented with interpolation

• Goal: cheap quasi-interpolation versus costly
interpolation.
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UNIFORM vs NON-UNIFORM GRIDS

• Vortex method moves vortex centers with flow

• Initially UNIFORM grid becomes IRREGU-
LAR

• Good news: RBFs OK

• Bad news: Accuracy penalty
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Grid-Tolerance

Theoretical study by Boyd-Bridge: perturbing
a grid by (i) shifting one point or (ii) omitting
one point entirely halves α to achieve a given
saturation error.
Fig. shows the saturation error grows when

one point is shifted by sh.
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Modified Quasi-Interpolation on a
Non-Uniform Grid

Maz’ya & Schmidt show: if GRID is the IM-
AGE of a UNIFORM GRID by SMOOTH MAP-
PING, QI can be rendered high order AGAIN.
Suppose xj is the image of a uniform grid un-

der the mapping function m(x)

xj = m(jh)

fQ ≡ α√
π

∞∑

j=−∞
f(xj)φ

(
α

h

x − xj

dm/dx(jh)

)

• In higher dimensions, dm/dx is replaced by
the determinant of the Jacobian of the vector
of mapping functions.

• Flow provides the mapping for vortex meth-
ods

• It is NOT necessary to explicitly construct
the mapping; local finite difference approxi-
mations suffice
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• Even a slight non-uniformity increases satu-
ration error:

xj = jh + (1/1000) sin(πjh)

• L. Barba and collaborators use RBF interpo-
lation to regrid their quasi-interpolating Gaus-
sian vortex blob method every 10 timesteps.
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Figure 9: Black: modified 4th order QI. Green: unmodified QI. Red: 4.E4N−4, f=inline(’exp(-20*x .*x)’,’x’);
ggamma=inline(’x+0.001*sin(pi*x)’,’x’); xmap=ggamma(xunif); x ∈ [−1, 1].
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The Future

• Vortex-RBFs on the sphere is in progress
Comparisons of quasi-interpolation of

with standard interpolation
Regridding: Non-uniform ⇒ uniform
Adding/deleting vortex blobs
Wang-Krasny treecode (fast summation)

• Extension from the barotropic vorticity equa-
tion to the shallow water equations.

• Long term stratetgy: RBFs as a limited area
model (LAM) embedded in a global model
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