Verification through Adaptivity

Brian Carnes Bart van Bloemen Waanders Kevin Copps bcarnes@sandia.gov

> Sandia National Laboratories Albuquerque, NM

August 18-20, 2009 NCAR Frontiers of Geophysical Simulation Workshop SAND09-5712C

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Carnes (Sandia)

Verification through Adaptivity

Contents

- Motivation
- Verification
- Error Estimation
- Adaptivity
- Applications

Motivation

- Geophysical events take place over vast time and length scales
- They also include phenomena at highly disparate scales
- The computational modeler must decide the relevant physics/scales/coupling to include and what to ignore
- Predictions from computational simulations must be high quality in order to defend against criticism
- The issue is to define quantitative measures of simulation quality

Predictive Simulation

- We need to keep in mind an overall process:
 - Verification (Code and Solution)
 - 2 Calibration
 - Validation
 - Predication + Error/Uncertainty Quantification
- Verification is solving the equations correctly (numerical accuracy)
- Calibration is tuning parameters to agree with appropriate experimental data
- Validation is solving the correct equations (model accuracy)
- Then we are ready to make predictions with their associated errors and uncertainties
- Uncertainty quantification requires a large number of simulations

A (10) A (10)

Overall Uncertainty Budget

- Sources of uncertainty in experiment and prediction (from Brian Adams, SNL):
 - parametric uncertainty (random fields and processes)
 - physical parameters
 - statistical variation, inherent randomness
 - operating environment, interference
 - initial, boundary conditions, forcing data
 - ★ geometry, structure, connectivity
 - material properties
 - manufacturing quality
 - model form (e.g., equation of state)
 - programmatic (policy decisions, requirements)
 - human reliability, subjective judgment
 - experimental error (measurement error, bias)
 - numerical accuracy (mesh, solver, approximations, etc.)

< 口 > < 同 > < 回 > < 回 > < 回 > <

Code Verification

- Code verification is a process of determining that the numerical algorithms in the code converge correctly.
- Adopted by many orgs (AIAA, ASME, ANS, DoD, DOE/NNSA)
- "We are solving the equations right"
- Can be very useful for determining coding errors
- Pass/fail based on comparing observed and theoretical convergence rates
- Requires test problems that satisfy conditions for theoretical rates
 - Example: IC = 300 K, BC = 500 K non-smooth jump at boundary
- Cannot detect errors resulting in inefficient algorithms
- Code is "verified" by the accumulation of verification test evidence

A (10) A (10)

Grid Refinement Studies

- Measuring convergence requires sequence of grids / time steps
- Standard approach is Method of Manufactured Solutions (MMS)
- Began in CFD community, but long used in numerical analysis
- Requires (arbitrary) analytical solution $u^{EX}(x, t)$
- PDE forcing data and BCs computed by substitution of $u^{EX}(x, t)$
- Errors can be measured using response quantities

$$\mathcal{Q}(u^{EX}) - \mathcal{Q}(U)$$

or norms

$$\|u^{EX}-U\|$$

Norms are specific to PDE and numerical method

Estimating Error Rates

• Uniform grids: can relate mesh size (h) to DoFs (N):

 $h \approx C N^{-1/d}$ d is spatial dimension

Since the exact solution is known, any two grids can be usedSpatial error rate for two grids:

$$p \equiv \frac{\log\left(\frac{\|u^{EX} - U_1\|}{\|u^{EX} - U_2\|}\right)}{\log(h_1/h_2)} = -d \frac{\log\left(\frac{\|u^{EX} - U_1\|}{\|u^{EX} - U_2\|}\right)}{\log(N_1/N_2)}$$

- The second form is more general can easily apply to highly graded or adaptive grids
- Time error can be included with appropriate modifications.

4 **A** N A **B** N A **B** N

Example: Thermal Verification

- Heat conduction in solids, enclosure radiation within void space
- Analytic solution is piecewise radial function
- Finite element norms were used (H^1, L^2, L^∞)
- Observed rates agreed with theoretical rates

Barriers to Code Verification

- Codes must support subroutines for ICs, BCs, source terms
- Grids must conform to geometry as mesh size \rightarrow 0.
- Subgrid physics modules
 - May be calibrated to a specific mesh
 - May not converge as the mesh is refined
- Modules not based on ODE/PDEs
- Inability to reach the asymptotic regime (where observed convergence rates stabilize)
- Non-monotone response quantities
- Adaptive time stepping and mesh refinement

- A TE N - A TE N

Solution Verification (Numerical Error Estimation)

- Code Verification applies to the general purpose accuracy of a code (e.g., code is second order)
- Solution or Calculation Verification applies to specific problems approximated by the code
 - PDE model
 - geometry
 - material/constitutive models
 - grid or sequence of grids
 - initial, boundary conditions; forcing data
 - parameter ranges of interest
- In Code Verification these are suitably varied to cover the intended code usage
- Most general purpose Solution Verification technique is Richardson Extrapolation

A (10) A (10)

Generalized Richardson Extrapolation: Response Quantities

- Assumed error model: $Q_i = Q + C h_i^{\alpha}$
- We do not assume that the convergence rate α is known
- Consider three uniform grids with mesh size $h_1 > h_2 > h_3$
- Constant mesh size ratio $\sigma = h_1/h_2 = h_2/h_3 > 1$.
- The Richardson Extrapolation estimate of (Q, α, C) are

$$\alpha \approx \frac{\log\left(\frac{Q_1 - Q_2}{Q_2 - Q_3}\right)}{\log \sigma}, \quad C \approx \frac{Q_1 - Q_2}{(h_1^{\alpha} - h_2^{\alpha})}, \quad Q \approx Q_1 - C h_1^{\alpha}$$

• Can use as extrapolated value or as error estimate $(Q - Q_i)$

< 回 > < 回 > < 回 >

Richardson Extrapolation: Limitations

• Requires monotone values of the response quantity:

$$(Q_1 - Q_2)/(Q_2 - Q_3) > 0$$

• Requires response quantity to be in asymptotic regime:

$$(Q_i - Q)/h_i^{\alpha} \approx C$$

- For large models three uniform grid refinements may be too expensive
- Similar issues as code verification: subgrid models, non-ODE/PDE models, etc.

- A TE N - A TE N

Example: Well-Behaved Problem

• 2D Poisson equation on unit square with MMS solution:

$$u(x, y) = \exp(-((x - x_0)^2 + (y - y_0)^2)/\sigma_0)$$

Linear finite elements on triangles

• Response function is average value: $Q(u) = \frac{1}{|\Omega|} \int_{\Omega} u \, dx$

Ν	Q	α	С	Q^{EX}
16	3.52262e-01	-	-	-
49	3.76728e-01	1.97800	-3.54810e-01	3.85052e-01
169	3.82939e-01	1.99072	-3.62391e-01	3.85027e-01
625	3.84502e-01	1.99651	-3.67375e-01	3.85024e-01
2401	3.84893e-01	-	-	-

Exact value is 3.85024405e-01.

Example: III-Behaved Problem

- Stationary heat conduction; four blocks with different properties.
- Geometric and material singularities.
- Response function is point value: $Q(u) = u(x_0, y_0)$

Ν	Q	α	Q^{EX}	
1.46e+02	465.56	-	-	
1.16e+03	459.82	0.9482	453.64	
9.34e+03	456.84	1.0888	454.20	
7.47e+04	455.46	5.8664	455.42	
5.98e+05	455.42	-5.4123	455.44	
4.78e+06	454.40	2.5375	454.18	
3.82e+07	454.22	-	-	

- Non-smooth problems and localized quantities (point values) can complicate RE.
- Validation/prediction must account for this numerical error.

Verification through Adaptivity

Richardson Extrapolation: Further Details

- Not assuming rate allows use in case of non-smooth data
- Fixed mesh ratio not required
- Can be extended to time-dependent problems, anisotropic meshes, pointwise errors in solution variables (Kamm and Hemez, LANL)

$$Q_i = C h_i^{\alpha} + D k_i^{\beta} + E h_i^{\gamma} k_i^{\delta} + \dots$$

 Can be extended to adaptive meshes (using number of unknowns instead of mesh size)

A Posteriori Error Estimation

- Mesh convergence studies performed for nominal (fixed) parameters can be impractical or unreliable:
 - parametric studies
 - optimization
 - uncertainty quantification
- A posteriori error estimation: estimating the numerical error using a single mesh in the absence of an exact solution.
- Goal: provide quantitative estimate of numerical error
- Requires analysis that can be specific to the mathematical model
- Dependent on the numerical method: finite element, finite volume, finite difference.

くぼう くほう くほう

Basic Types of Error Estimators

- Averaging/Recovery/Reconstruction operators
 - compute a smoother numerical solution using averaging.
 - the error estimator is the norm of the difference.
- Residual based
 - Explicit: compute PDE equation residuals scaled by mesh size.
 - Implicit: project PDE residuals against higher order basis
- These are based on estimating the error in norms.
- May not be robust across mathematical models.
 - elliptic -> parabolic requires small time step
- Goal oriented
 - Based on quantities of interest
 - General purpose approach applicable to many PDEs

Errors and Residuals

• Consider a linear PDE with operator *L* and data *f*:

$$Lu = f$$

• If U is an approximate solution, the error $e \equiv u - U$ solves

 $Le = f - LU \equiv R(U)$ the residual

The error is equivalent to the residual up to conditioning of L

 $||L||^{-1} ||R|| \le ||e|| \le ||L^{-1}|| ||R||$

• For nonlinear, transient problems the problem needs to be locally stable near *u* and *U*.

A D N A B N A B N A B N B B

Residuals and Adjoints

• Given response function *Q*, solve adjoint problem:

 $L^* \phi = Q$

The error in the quantity is then

$$Q(u) - Q(U) = Q(e)$$

= $\langle L^* \phi, e \rangle = \langle L e, \phi \rangle$
= $\langle R(U), \phi \rangle$
= $\langle R(U), \phi - I_h \phi \rangle$

- The last equation uses finite element error orthogonality.
- The residual is weighted by the error in the adjoint.

Goal-oriented Error Estimation: Transient Case

• Example: transient convection-diffusion

$$u_t + V \cdot \nabla u - k \bigtriangleup u = f$$

- The adjoint is linearized around U and runs backwards in time
- Quantity of interest can be initial/forcing/flux BC data

$$-\phi_t - \nabla \cdot (\phi V) - k \bigtriangleup u = Q_f, \quad \phi(\cdot, T) = Q_T$$

Form of error estimate (Φ is space/time adjoint approximation):

$$Q(u) - Q(U) = \sum_{n} \int_{I_n} (f - U_t - V \cdot \nabla U, \phi - \Phi) dt$$
$$- \sum_{n} \int_{I_n} (k \nabla U, \nabla(\phi - \Phi)) dt$$
$$+ (u_0 - U_0, \phi_0)$$

Local Error Contributions

• The residual is broken into space/time contributions

$$||R_{K,n}(U)|| = ||LU - f||_{K,n} + \dots$$

The adjoint weights are also calculated locally

$$\|\omega_{K,n}\| = \|\phi - I_h \phi\|_{K,n}$$

• Local residuals are weighted by their influence on the error in the global output.

Error Estimator =
$$\sum_{n=1}^{N} \sum_{K} \|R_{K,n}(U)\| \|\omega_{K,n}\|$$

Goal-oriented Error Estimation Challenges

- Approximation to adjoint:
 - Solve adjoint using a higher order method
 - Solve adjoint using same order method + postprocessing
- Computational cost balance increased accuracy against cost
- Requires more access to code internals, more developer time.
- Loosely coupled physics can hide error propagation effects
- Time dependent problems introduce backward time integration, storage of forward solution.

14 TH 16

Example: Bistable MEMS Beam

- The response is the minimum force (as function of displacement)
- Several parameters are varied in a UQ study.
- The goal-oriented error estimator can correct for numerical error.

Adaptivity

▲ ■ ▶ ■ • ○ Q C NCAR 09 25 / 36

イロン イロン イヨン イヨン

Adaptivity Implementation

- Types of adaptive mesh refinement (AMR)
 - Block structured AMR
 - Unstructured AMR
 - External remeshing using mesh size function
- Components of error estimation
 - Compute error indicators (local contributions)
 - Mark elements for refinement/coarsening
 - Refine mesh by creating/deleting elements
 - Prolong/restrict solution fields to new mesh
- Modifications to numerical algorithms from hanging nodes
 - Finite element: hanging node constraint enforcement
 - Finite volume: flux computation on refined faces

伺 ト イ ヨ ト イ ヨ ト

Adaptivity and Solution Verification

Recall the error rate for uniform refinement

 $\operatorname{Error} = C h^{\alpha} = C N^{-\alpha/d}$

- For realistic problems we have $\alpha < \alpha^{OPT}$
 - discontinuous material properties
 - irregular forcing data, BCs, ICs
 - geometric singularities (e.g., reentrant corners)
- Adaptivity can restore the optimal rate in terms of *N* by considering the larger class of adapted meshes

$$\mathsf{Error} = C N^{-\alpha^{OPT}/d}$$

This leads to exponential gains in efficiency for same accuracy

• For problems that are smooth but highly variable, adaptivity can only reduce the constant *C*

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example: Adaptivity and Error in Norms

• Smooth localized exponential solution

Solution with discontinuous material properties

4 E

Example: Adaptivity and Point Value

- Stationary heat conduction; four blocks with singularities.
- Response function is point value: $Q(u) = u(x_0, y_0)$
- Adaptivity based on gradient recovery (*H*¹ norm error estimator)

Result not typical: error estimator not based on error in Q

~	(O) !! \
(arnee	Sandia
Garnes	Janua

Adaptivity and Goal-oriented Error Estimation

- Typically element error contributions are nonnegative.
- Most accurate form of local contribution is signed: but can bound contribution by absolute value

$$\eta_{K,n} = \langle R_{K,n}(U), \phi - I_h \phi \rangle \le \| R_{K,n}(U) \| \| \phi - I_h \phi \|$$

- Using the signed values requires new approaches to marking elements for adaptivity
 - Statistical: mark elements for refinement if outliers: $|\eta_{K,n} \mu| > \gamma_R \sigma$
 - Cancellation: use cancellation of positive and negative contributions to reduce error
 - Correlations: refine/coarsen where similar contributions cluster

Application: Transient Thermal

- Response is average temperature in one block at final time
- Spatial error dominated, transient error controlled by IBDF
- Adaptivity as outer loop around transient solve

Application: High Speed Flow

- Adaptivity can resolve shocks in high speed compressible flow
- Stabilized finite element Euler equations in SNL code Aria
- Here the error indicator is jumps in density gradients

Figure: (left) pressure and density contours (right) comparison of stagnation line profile

Cornoo	Cond	in
Games (Janu	Id,

Application: Solid Mechanics

- Modeling of rolling tire contact with road surface
- Adaptivity based on prescribed refinement box
- Error indicator computed to contrast with feature-based refinement

	(O	
(arnee	Sanc	121
Garnes	Julic	na,

Application: Optimal Control

- Contaminant transport and surface reaction in contact tank reactor
- Surface reaction rates (six) are control parameters
- Objective function is least squares misfit to prescribed surface concentration (linear in *x*-direction)
- Goal-oriented error estimator applied to objective functional

★ ∃ > < ∃ >

Application: Optimal Control and Adaptivity

- Adaptivity loop around optimization solver (Trilinos/MOOCHO)
- Acceleration of optimization using re-use of reduced Hessian between adaptive meshes
- Compared black box & embedded optimizers
- Adaptivity and embedded optimizer most efficient combination

Final adapted mesh

Accuracy versus CPU time

Conclusions

- Overview of verification, error estimation and adaptivity
- Described barriers and limitations of verification and error estimation
- Demonstrated effectiveness of goal oriented error estimation (transient, optimization)

Future Work

- Optimal balance of efficient and accurate goal oriented error estimation (how much higher order do we need?)
- Higher order adjoint for various time integration schemes (relate methods to Galerkin + quadrature)
- Optimal adaptivity for transient problems (adaptive meshes for large time blocks)