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Outline: Implicit-Explicit Time Stepping Methods for 
Multiphysics Problems

 The need for high-order methods

 IMplicit-EXplicit (IMEX) time stepping for multiphysics problems

 Extend classical extrapolation methods to extrapolated IMEX

 Introduce three new very high-order IMEX methods for ODEs, 

DAEs, and PDEs

 Analyze linear stability and consistency

 Implementation considerations for multicore architectures
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The need for high-order time stepping 

 The order of convergence & stability play an important role in efficiency
 The focus is placed on high-order methods with large stability regions
 Representation of normalized asymptotic convergence rates:

truncation 
error 
coefficient

stability

fixed 
accuracy

LMM4 (k=5) high-order 
method, but not robust

4th order 
methods

3rd order 
method
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Problems with processes that can be informally categorized 
according to their dynamics into fast (stiff) and slow (nonstiff)

 Problem:

 Additive partition:

nonstiff (slow) component stiff (fast) component
time step  larger than characteristic time 

 Explicit methods are effective for slow processes b/c of low cost

 Implicit schemes are more efficient for fast processes b/c of stability considerations

 IMEX are more efficient for problems with both stiff and nonstiff components

(advection-diffusion-reaction)
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IMEX methods for differential equations with stiff and 
nonstiff components

 Multistage (Runge-Kutta) IMEX: difficult to construct

 Ascher-Ruuth-Spiteri (ARS) [1997]
 Pareschi-Russo (PR) [2000]
 Kennedy-Carpenter (ARK) [2003]

 Linear multistep IMEX: stability restrictions

 Ascher-Ruuth-Spiteri [1995]
 Hundsdorfer-Ruuth (IMEX-BFD) [2007]
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High-order IMEX Runge-Kutta methods are very difficult 
to construct

[Kennedy and 
Carpenter 2003]

 Fifth order IMEX 
Runge-Kutta method 
with embedded fourth 
order

explicit part

implicit part
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Extrapolated IMEX methods can be used to efficiently 
integrate multiphysics problems

 Problem:

 Extrapolation methods (easy construction) [Gragg, 1964]:

 “Base” methods:

 Extrapolation:

 Extrapolated IMEX

order p
order p+1

order p+2
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Implementation of the proposed extrapolated IMEX schemes

 Problem: order p
order p+1

order p+2

 Note: the Jacobians are 
evaluated onceCou
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Linear stability analysis for IMEX methods

[stiff][nonstiff]

 Classical linear stability:

 IMEX linear stability:

Explicit stability region Implicit stability region
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Linear stability analysis for the proposed extrapolated 
IMEX methods
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Consistency analysis of extrapolated IMEX methods for 
stiff problems

 Perform a change of variables:

 IMEX (SPP) ODE:

 DAE (index-1):

 The consistency analysis is done through the expansion of the global error
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 The W-method, Pure-IMEX, and Split-IMEX schemes have global error expansions: 

numerical approx. 
after i steps

exact solution smooth 
functions perturbations

 The extrapolation method cancels the smooth coeff. a, b; but not the perturbations

 W-method:  Pure-IMEX scheme:  Split-IMEX scheme 

Asymptotic expansion of the global error for the extrapolated 
IMEX methods applied to DAEs
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Asymptotic expansion of the global error for the extrapolated 
Split-IMEX scheme applied to DAEs 

 Accuracy Split-IMEX
entry jk in the 
extrapolation tableau

 Extrapolated Split-IMEX:
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Theoretical local extrapolation orders for linearly implicit, W-
IMEX, Pure-IMEX, and Split-IMEX methods for index-1 DAEs 
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Example of nonlinear DAE index-1 solved with extrapolated Split-
IMEX extrapolation method

 DAE example:
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Asymptotic expansion of the global error for the extrapolated 
IMEX methods applied to ODEs

 Perturbed expansion:

 ODE solved with 
extrapolated W-method:

 Same orders as obtained for DAEs, but with an extra         term 
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Asymptotic expansion of the global error for the extrapolated 
IMEX methods applied to ODEs

 ODE (van der Pol):

 Pure-IMEX W- and Split-IMEX

 ARK
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Efficient implementation considerations

variable order

embedded
method

first column is 
expensive

the rest are very cheap

 Extrapolation methods can accommodate:
– very high accuracy
– variable orders
– lower order embedded approximations 

for error control
 Each approximation in the first column is 

independent:
– parallelize easy
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Very high accuracy experiments with an advection-reaction 
PDE problem

 Advection-reaction PDE example:

 Global orders (W-|Pure-|Split-IMEX):
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Very high accuracy experiments show the method robustness 

 Advection-reaction PDE example:

 Advection-reaction convergence: Comparison among IMEX-BDF, ARK, and 
extrapolated IMEX up to order 18 on (one and eight cores)
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Conclusions

 Extrapolated W-, Split-, Pure-IMEX can be efficient integrators for 

multiphysics problems 

 Computationally less expensive than fully implicit methods 

 Easy to construct and implement w/ favorable accuracy properties

 Embedded lower order approximations/variable order are automatic

 Applicable to ODEs, DAEs index-1, PDEs via MOL

 Easy to parallelize and suitable for multicore architectures
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