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Lots of focus on spatial accuracy, but
time matters just as much

The Loston Slobe

May 1, 2004. The way things turned out, the Sox and Rangers could have played
for nearly an hour and 45 minutes before the rain b angers officials said
:30 p.m., about 25

They were led to believe the storm would strike a
minutes after the scheduled start time. In fact
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Ganme 5 of Series Is Suspended use of
Rai n, Oct 28. 2008. W ObVIO

noni tored the weat her all elig
said after the gane mes ended at
about 11:10 p.m "W told about
7:45 [p.m] that it méy d only be a
tenth of an inch o @:‘ll n between then
and m dni ght or t‘é}eafter. . . . | bhad
a naggi ng fear because these forecasts
have changed so nuch.”
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Benchmark: Melting of Pure Gallium

1=20sec t=40sec t=60sec t=B0sec

Contours:

Streamfunction, 20 40 60
Grid: 160x400

gl
20
3 Managed by UT-Battelle

for the Department of Energy Evans and KnO”, |JNMF, 2007




Fully implicit scheme:
Jacobian-Free Newton-Krylov Method, or JEFNK

Goal: minimize the residual of the full nonlinear equations,
F(x), at new time level to a specified Q&\lmear tolerance

&
M = continuous non-
MX - b — ( ) 18/8 linear operator matrix
t Take the 1st order
F (x - Jé& 5x Taylor series approximation
k‘l‘l §Q~ k _'_ 5x Generate a good update to
@,

test for convergence at
iteration k
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Fully Implicit JFNK Algorithm

Yes

| Below nonlinear tolerance?

Time Loop
Nonlinear Solve
Linear Solve

No

Below linear tolerance?

Apply (Right) P@g itioner
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(Right) Preconditioner
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No preconditioner
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Maximum vorticity vs. time to 44s
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Streamfunction contours at 44s for a range
of solution algorithms
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Same comparison, at 48s
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Linear Stability Analysis Extension

« Keep time derivative - no longer looking for stable
states but unstable transition 5
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Linear Stability Analysis:
Surface of Solutions for Pr=0.71

.Wx 107" %6

Growth Rate
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Temperature contours for Gr=8700
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Time Integration: Secondary flow cells
develop within the background flow
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Time Integration: Growth of dT

Gr=8700 Magenta
Gr=8600 Blue
Gr=8500 Green
Gr=8400 Red
Gr=8200 Black

In(dT)
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HOMME: High-Order Method Modeling
Environment

0 Spectral element, cubed sphere dynamic core option
of the Community Atmospheric Mod%l

o Explicit and semi-implicit solver lons

o Global atmosphere model de é@ped In part through
the DOE CCPP program at&l&g R

o Principal HOMME Devel IS:
o John Dennis (NCAR/CW\
o James Edwards (N
0 Rory Kelly (NCA
o Ramachandr \b Nair (NCAR)
0 Amik St-Cy (NCAR)
o Mark Taylor (Sandia)
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Atmospheric Climate Model Test Cases:
Shallow Water Equations
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SW Test Case 2. Steady-State nonlinear
geostrophic flow for 12 days, o = n/4

Steady state, nonlinear zonal ~ ~ geopatlevel =0time=0 days
flow. |

*\Wind corresponds to solid
body rotation

*Tests performance and

treatment of nonlinearities &

o#felements=216, NP=12 N o o e sow wov sov o son_son o
(~150km resolution) \\\k' e

S

Time Integration Tafﬁre Step  Wall L2 error
Method 3 Clock (s)

Leapfrog QO 100s 1m2s 6.0e-16
BDF2 86400s 8.3s 1.9e-15

The implicit configuration took 1 Newton iterations, 56 Krylov iterations for the
one time step.
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Test case 5: flow over a mountain
feature

geop at level = 0 time=15
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Test Case 5: Time Iintegration method
versus a small time step size benchmark

L2 norm Err of Geopotential Height at 15 days, TC5 ne=48, NP=4
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Test case 6:

geop at level = 0 time=14 days
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Test Case 6: Time Integration method
versus a small time step size benchmark

L2 norm Err of Geopotential Height at 14 days, TC6 ne=48, NP=4

L2 Norm Error

C}O R : - | =8 Semi-Implicit :
10750 /N | = Explicit Leapfrog | . .
............... Fully Implicit

20 Managed by UT-Battelle
for the Department of Energy

Presentation_name



Test Case 6: Time Integration method
versus a small time step size benchmark
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Analysis:

* All the methods implemented in HOMME can
Improve upon the previously establish limit of
accuracy when the benchmark&olution is
temporally (and spatially) %/Qmerged.

- The second order discretized methods with

no time splitting or fiI@rs are second order
accurate \\\F

 The implicit metf{ggd is able to run 20x greater
time step sizg?han the gravity wave CFL and
maintain aeg?uracy at the diffusion limit. Test
case 5 can be run at about 30x tss larger at
the diffusion accuracy limit.
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Questions?
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Time step convergence study of Gallium melting
simulations at early times, 80x200 grid
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Inner linear Krylov loop (GMRES) produces
an update for the Newton loop:

F(x +ev) (%)
6)‘0
&

“JE* designation: onl)gg.v is used, and generated
with a finite differ%'king approximation

<&

Q.

With GMRES, S@Qge grows with each iteration, so a quality
preconditionef S5 crucial. Ideally we want the number
GMRES iterations to be flat with increasing problem size.

Jv ~
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Spectral Element Spatial Discretization

Spectral Transform Methods Finite Element Methods

&,
S

Geometric flexibility

High order Accuracy

High convergence rate Minimal Communication

&é@st of both

Q.

*Cubed sphere grid; @ch face is subdivided into square elements
*Variables within element are approximated by polynomial
expansions

sCommunication only needed at element edges (Galerkin)

Mesh refinement can occur via adding elements or increasing order
of spectral degree
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