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Overview

@ Generalize of Prather's moment method (JGR 1986) to unsplit
advection on general mesh topologies

@ Take advantage of existing Lagrange-remap algorithms (Lipscomb
& Ringler, MWR 2005)

@ Resulting method: Characteristic Discontinuous Galerkin (CDG),
which is based on space-time discontinuous Galerkin

@ Ultimate goal: Minimize spurious diapycnal mixing (e.g., Griffies et
al 2000)

» Here, our approach is to increase the order-of-accuracy
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Some Past Work on Explicit DG

@ Explicit Runge-Kutta DG:
Cockburn & Shu 1989
Levy, Nair, Tufo 2007
Giraldo & Warburton 2008
Giraldo & Restelli 2008
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@ Explicit Space-time DG:
» Lowrie 1996

» Falk & Richter 1999
» Palaniappan, Haber, Jerrard 2004
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Tracer Advection

@ Given U(X,t), solve

Op+V - (pt) =0, (1a)
H(pT)+V - (pTu)=0. (1b)
@ Implies
DT D -
tho, Ht:at—i-uv

@ To ensure conservation, we discretize the system (1).
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Some manipulations...

@ Begin with
O(pT) +V - (pTu) =
@ Multiply by a smooth function ¢ j(X, t) and rearrange:

Doy i
Dt

Ot(ok,ipT) + V- (¢k,ipTU) = pT

@ Weak form over a control volume (element) Qx x [t", t"1]:

(1 1
[ @irD™ = @wn] das [ oioTa-fiosat = [ /pT 206l gqa.
Qe oy o Q
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Space-Time DG
@ Over each Q x (1, t"1], expand solution as
(pT)(%,1) ch drj(X, 1), X€Q, te(t" ™).

@ Discontinuous at element boundaries
@ Alternatively, expand p and T separately
@ For each ¢ i(X,t), i = 1..N, solve weak form:

+1 1
[ [@nien™ —onony] on+ [ owpta-dgsa= [ [ o770 agar.
Q2 th 09y thQy
N

which gives an equation for each {ck/ =
@ Boundary terms upwinded based on space-time characteristics
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Semi-Discrete DG

@ On each element Qy, expand solution as
(pT)( Xl' Zij ﬁk/ , X e Q.

@ For each S i(X), i = 1..N, write the tracer advection equation as

/ﬁk,iat(PT) a2+ f BripTU-nds = /PTU'Vﬁk,i aq.

Q aQy Qx

which gives an equation for each {c ;(t)}
@ Evolve ¢ () using Runge—Kutta (RKDG).

@ Basis polynomials of order-p: CFL < 1/(2p + 1) for small p,
“stages = order.”
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Space-Time DG vs. RKDG

@ Advantages of Space-Time DG:
» Can obtain same order-of-accuracy in both space and time
» Independent of order-of-accuracy, explicit methods are stable for
CFL = (|u|At/AX)max < 1
@ Disadvantages:
Complicated to code
Computational cost generally higher
More unknowns per element than semi-discrete methods
Enforcement of positivity or monotonicity less clear

v
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@ At least for tracer advection, can we remove the disadvantages?
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Space-Time DG vs. RKDG

@ Advantages of Space-Time DG:

» Can obtain same order-of-accuracy in both space and time
» Independent of order-of-accuracy, explicit methods are stable for
CFL = (|u|At/AX)max < 1

@ Disadvantages:

» Complicated to code

» Computational cost generally higher

» More unknowns per element than semi-discrete methods
» Enforcement of positivity or monotonicity less clear

@ At least for tracer advection, can we remove the disadvantages?
@ Answer: For the most part, yes.
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More manipulations...

Replace 5
OonipT) +V - (0nipT0) = pT 0kl
with the system
H(¢k,ipT) +V - (¢k,ipTU) =0, (2a)
Dok,
el 0. (2b)

@ For U = const., eq. (2b) = ¢ (X, t) = F(X — ut)

@ Because we seek % = 0, eq. (2b) might seem redundant.
However,

» (2a) maintains conservation
> (2b) is local to each element and can be solved once for all tracers
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Characteristic Discontinuous Galerkin (CDG)

@ For a polygon Q with faces 0 ¢,

tn+1
/[(¢k,iPT)"+1 _(¢k,iPT)n} dQ+Z/ / ¢k pTU-fidsdt =0.
Qk f tn an,f

@ In this study, we solve the equivalent form

[ [Ty = @einTy] da+ 3 [ (@xieT)" d=o0.

Q f Qﬂ,f

where (Q;(’,, t™) is the Lagrangian pre-image of the face
8Qk7f X [tn, tn+1].
@ Need to define ¢y i(X, t)
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Solving D¢y j/Dt = 0
@ For each time-level n, on element Q, let
N
(pT)(X,t") = e iBri(X), X € Q.
j=1

@ For a given time interval t" < t < t"', we have
¢k7,'()_(‘, t) = ﬁk’,-(r()?, t)), where

1

%, =X+ [ d(%,).)
t
=X+ ("' —t)ti,  for i = const.

@ Integration of characteristics needed once for ALL tracers.

lowrie@lanl.gov LA-UR 09-05180 FGS/NCAR 14/34



CDG on a Cartesian Mesh

Quest: Find polynomial representation of solution in center cell at new time level.
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“Semi-Lagrangian” Step

Trace characteristics at each node from t™' to " (use RK4)
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Find Lagrangian pre-image for each face...
...and break into triangles; see Lipscomb & Ringler (MWR 2005)
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Evaluate each integral with quadrature

Below is an example quadrature point, X,
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At each quadrature point, trace characteristics...

.. from t" to t"*" to determine ¢(Xy, t") = B(Tg)
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Local Linear System for CDG

@ CDG solves

/ [(ﬁbk,ipT)n—H - (¢k,iPT)n} dQ + Z / (qbk,,',oT)n dQ =0.

% f Qs
@ Reduces to a local N x N system on each element-k:
. AN+H1 _ gn
Mije i =1

@ Because ¢ i(X, ") = B i(X),

M;; = /ﬂk,i(})ﬂk,j(y) dQ.
Qx

@ Same form as each stage of RKDG.
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CDG = L2-minimization

@ CDG solves

/ {(¢k,/ﬂ7')"+1 - ((ﬁk,iPT)n} aQ+y / (¢,ipT)" d2=0.

Qx f Q;(,f

@ If exact integration is used, then this may be written as

where (Q), t") is the Lagrangian pre-image of (Q, t"*)
@ Equivalent to L2-minimization:

min / (o DEE. ) — (TY(E )] aa,

Cn+_1 s
Qk

ki
— /
where J = |dQ/d€|.
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Properties of CDG(p)

@ CDG(p) uses a polynomial basis of order-p, with p > 0.

@ Requires a method for integration on each Lagrangian pre-image
and evaluation of characteristic trajectories.

» For general mesh topologies, can use incremental remap method
of Lipscomb & Ringler (MWR 2005)
» = stable for CFL < 1
@ Locally conservative
@ At a fixed CFL, error is typically O(AxP+") in space and time

» But “quasi-accurate:” If pre-image is non-polygonal, then current
remap limits overall accuracy to O(Ax?).

@ Parallelizes well with a single communication per At

» RKDG communicates at each RK stage, but only data at face
quadrature points
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CDG(p): Relationship to Other Methods

@ In 1-D with mass coordinates (or p, U constant):
» CDG(0) is equivalent to first-order upwind
» CDG(1) is equivalent to:
* Van Leer's Scheme Ill (JCP 1977, “exact evolution with L2-projection”)
* Russell & Lerner’s method (JAM 1981)
» CDG(2) is equivalent to:
* Van Leer’s Scheme IV (JCP 1977)
* Prather’s method (JGR 1986)
* Piecewise-Parabolic Boltzmann (PPB) (Woodward 1986)
@ Can be viewed as the following extensions to Prather’s method:
Any p > 0 (Prather: p = 2)
General mesh topologies (Prather: Cartesian)
Dimensionally unsplit (Prather: split)
Triangle or diamond basis truncation (Prather: triangle)

v vy vYyy
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Common Properties of Test Cases

@ p constant

@ 2-D unit square, doubly periodic
@ Cartesian mesh, Ax = Ay

e CFL=0.8

@ CDG(p) used tensor-product Legendre polynomials with triangle
truncation
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Solid-Body Rotation of a Gaussian Bump

Gaussian bump rotates about center of domain.

t=0and t=1
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Errors for Solid-Body Rotation of a Gaussian Bump

After 1 rotation
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CDG vs. RKDG (RKDG using RK4 in time)

CDG(3) CFL limit is 7 times that of RKDG(3)
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Deformation of a Gaussian Bump

Stream function: ¥(x, y, t) = cos(wt/2) sin?(7x) sin?(wy) /7. Compute errors at t = 2.

t=0andt=2 t=1

</
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Sample Results at t = 1
32 x 32 Mesh, exact Tmax = 1. Both methods used the same At (CFL = 0.8)

CDG(1), Tmax = 0.7997 CDG(3), Tmax = 1.0170

-/ -7/
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Sample Results at t = 2

32 x 32 Mesh, exact Tmax = 1. Approximately 4 cells across initial Gaussian.

CDG(1), Tmax = 0.6080 CDG(3), Tmax = 0.9872

CDG(Z), Tma)( - 08685
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Errors for Deformation of a Gaussian Bump

Lagrangian pre-image non-polygonal = CDG accuracy limited to 2nd-order. RKDG
maintains accuracy.
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Scaling of CPU Time with Number of Tracers
Results normalized by RKDG(3) time for 1 tracer

25

CPU / Tracer / At
P
ul

— RKDG(3)
— CDG(3)

0.5
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Summary and Future Work

Summary:
@ At afixed CFL, CDG(p) with incremental remap is

» stable for CFL < 1
» O(AxP*+!) accurate in space and time whenever pre-image is a
polygon; otherwise, O(Ax?)

@ Majority of computational work independent of number of tracers
@ Van Leer |V, Prather, PPB, ... = CDG(2)
Future work:
@ Monotonicity, positivity
@ Couple with fluid models
@ Other meshes (triangulations, Voronoi)
@ Other geometries (e.g., on the sphere)
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