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Overview

Generalize of Prather’s moment method (JGR 1986) to unsplit
advection on general mesh topologies
Take advantage of existing Lagrange-remap algorithms (Lipscomb
& Ringler, MWR 2005)
Resulting method: Characteristic Discontinuous Galerkin (CDG),
which is based on space-time discontinuous Galerkin
Ultimate goal: Minimize spurious diapycnal mixing (e.g., Griffies et
al 2000)

I Here, our approach is to increase the order-of-accuracy
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Some Past Work on Explicit DG

Explicit Runge-Kutta DG:
I Cockburn & Shu 1989
I Levy, Nair, Tufo 2007
I Giraldo & Warburton 2008
I Giraldo & Restelli 2008
I ...

Explicit Space-time DG:
I Lowrie 1996
I Falk & Richter 1999
I Palaniappan, Haber, Jerrard 2004
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Tracer Advection

Given ~u(~x , t), solve

∂tρ+∇ · (ρ~u) = 0 , (1a)
∂t (ρT ) +∇ · (ρT~u) = 0 . (1b)

Implies
DT
Dt

= 0 ,
D
Dt
≡ ∂t + ~u · ∇ .

To ensure conservation, we discretize the system (1).
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Some manipulations...

Begin with

∂t (ρT ) +∇ · (ρT~u) = 0 .

Multiply by a smooth function φk ,i(~x , t) and rearrange:

∂t (φk ,iρT ) +∇ · (φk ,iρT~u) = ρT
Dφk ,i

Dt
.

Weak form over a control volume (element) Ωk × [tn, tn+1]:

Z
Ωk

h
(φk,iρT )n+1 − (φk,iρT )n

i
dΩ +

tn+1Z
tn

I
∂Ωk

φk,iρT~u ·~n dsdt =

tn+1Z
tn

Z
Ωk

ρT
Dφk,i

Dt
dΩdt .
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Space-Time DG

Over each Ωk × (tn, tn+1], expand solution as

(ρT )(~x , t) =
N∑

j=1

cn+1
k ,j φk ,j(~x , t) , ~x ∈ Ωk , t ∈ (tn, tn+1] .

Discontinuous at element boundaries
Alternatively, expand ρ and T separately
For each φk ,i(~x , t), i = 1..N, solve weak form:

Z
Ωk

h
(φk,iρT )n+1 − (φk,iρT )n

i
dΩ +

tn+1Z
tn

I
∂Ωk

φk,iρT~u ·~n dsdt =

tn+1Z
tn

Z
Ωk

ρT
Dφk,i

Dt
dΩdt .

which gives an equation for each {cn+1
k ,j }

N
j=1

Boundary terms upwinded based on space-time characteristics
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Semi-Discrete DG

On each element Ωk , expand solution as

(ρT )(~x , t) =
N∑

j=1

ck ,j(t)βk ,j(~x) , ~x ∈ Ωk .

For each βk ,i(~x), i = 1..N, write the tracer advection equation as∫
Ωk

βk ,i∂t (ρT ) dΩ +

∮
∂Ωk

βk ,iρT~u · ~n ds =

∫
Ωk

ρT~u · ∇βk ,i dΩ .

which gives an equation for each {ck ,j(t)}Nj=1.
Evolve ck ,j(t) using Runge–Kutta (RKDG).
Basis polynomials of order-p: CFL < 1/(2p + 1) for small p,
“stages = order.”
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Space-Time DG vs. RKDG

Advantages of Space-Time DG:
I Can obtain same order-of-accuracy in both space and time
I Independent of order-of-accuracy, explicit methods are stable for

CFL ≡ (|~u|∆t/∆x)max < 1
Disadvantages:

I Complicated to code
I Computational cost generally higher
I More unknowns per element than semi-discrete methods
I Enforcement of positivity or monotonicity less clear

At least for tracer advection, can we remove the disadvantages?
Answer: For the most part, yes.
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More manipulations...

Replace

∂t (φk ,iρT ) +∇ · (φk ,iρT~u) = ρT
Dφk ,i

Dt
,

with the system

∂t (φk ,iρT ) +∇ · (φk ,iρT~u) = 0 , (2a)
Dφk ,i

Dt
= 0 . (2b)

For ~u = const., eq. (2b)⇒ φk ,i(~x , t) ≡ F(~x − ~ut)

Because we seek DT
Dt = 0, eq. (2b) might seem redundant.

However,
I (2a) maintains conservation
I (2b) is local to each element and can be solved once for all tracers
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Characteristic Discontinuous Galerkin (CDG)

For a polygon Ωk with faces ∂Ωk ,f ,

∫
Ωk

[
(φk ,iρT )n+1 − (φk ,iρT )n

]
dΩ+

∑
f

tn+1∫
tn

∫
∂Ωk,f

φk ,iρT~u ·~n dsdt = 0 .

In this study, we solve the equivalent form∫
Ωk

[
(φk ,iρT )n+1 − (φk ,iρT )n

]
dΩ +

∑
f

∫
Ω′k,f

(
φk ,iρT

)n dΩ = 0 ,

where (Ω′
k ,f , t

n) is the Lagrangian pre-image of the face
∂Ωk ,f × [tn, tn+1].
Need to define φk ,i(~x , t)

lowrie@lanl.gov LA-UR 09-05180 FGS/NCAR 13 / 34



Solving Dφk ,i/Dt = 0

For each time-level n, on element Ωk , let

(ρT )(~x , tn) =
N∑

j=1

cn
k ,jβk ,j(~x) , ~x ∈ Ωk .

For a given time interval tn ≤ t ≤ tn+1, we have
φk ,i(~x , t) = βk ,i(~Γ(~x , t)), where

~Γ(~x , t) = ~x +

tn+1∫
t

~u(~Γ(~x , ξ), ξ) dξ

= ~x + (tn+1 − t)~u , for ~u = const.

Integration of characteristics needed once for ALL tracers.
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CDG on a Cartesian Mesh
Quest: Find polynomial representation of solution in center cell at new time level.
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“Semi-Lagrangian” Step
Trace characteristics at each node from tn+1 to tn (use RK4)
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Find Lagrangian pre-image for each face...
...and break into triangles; see Lipscomb & Ringler (MWR 2005)
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Evaluate each integral with quadrature
Below is an example quadrature point, ~xg

�xg
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At each quadrature point, trace characteristics...
... from tn to tn+1 to determine φ(~xg , tn) = β(~Γg)

�xg

�Γg
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Local Linear System for CDG

CDG solves∫
Ωk

[
(φk ,iρT )n+1 − (φk ,iρT )n

]
dΩ +

∑
f

∫
Ω′k,f

(
φk ,iρT

)n dΩ = 0 .

Reduces to a local N × N system on each element-k :

Mi,jcn+1
k ,j = f n

k ,i .

Because φk ,i(~x , tn+1) ≡ βk ,i(~x),

Mi,j =

∫
Ωk

βk ,i(~x)βk ,j(~x) dΩ .

Same form as each stage of RKDG.
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CDG⇒ L2-minimization

CDG solves∫
Ωk

[
(φk ,iρT )n+1 − (φk ,iρT )n

]
dΩ +

∑
f

∫
Ω′k,f

(
φk ,iρT

)n dΩ = 0 .

If exact integration is used, then this may be written as∫
Ωk

(
φk ,iρT

)n+1 dΩ =

∫
Ω′k

(
φk ,iρT

)n dΩ ,

where (Ω′
k , t

n) is the Lagrangian pre-image of (Ωk , tn+1)

Equivalent to L2-minimization:

min
cn+1

k,i

∫
Ω′k

[
(ρT )(~Γ(~x , tn+1))J(~x)− (ρT )(~x , tn)

]2
dΩ ,

where J = |dΩk/dΩ′
k |.
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Properties of CDG(p)

CDG(p) uses a polynomial basis of order-p, with p ≥ 0.
Requires a method for integration on each Lagrangian pre-image
and evaluation of characteristic trajectories.

I For general mesh topologies, can use incremental remap method
of Lipscomb & Ringler (MWR 2005)

I ⇒ stable for CFL < 1

Locally conservative
At a fixed CFL, error is typically O(∆xp+1) in space and time

I But “quasi-accurate:” If pre-image is non-polygonal, then current
remap limits overall accuracy to O(∆x2).

Parallelizes well with a single communication per ∆t
I RKDG communicates at each RK stage, but only data at face

quadrature points
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CDG(p): Relationship to Other Methods

In 1-D with mass coordinates (or ρ, ~u constant):
I CDG(0) is equivalent to first-order upwind
I CDG(1) is equivalent to:

F Van Leer’s Scheme III (JCP 1977, “exact evolution with L2-projection”)
F Russell & Lerner’s method (JAM 1981)

I CDG(2) is equivalent to:
F Van Leer’s Scheme IV (JCP 1977)
F Prather’s method (JGR 1986)
F Piecewise-Parabolic Boltzmann (PPB) (Woodward 1986)

Can be viewed as the following extensions to Prather’s method:
I Any p ≥ 0 (Prather: p = 2)
I General mesh topologies (Prather: Cartesian)
I Dimensionally unsplit (Prather: split)
I Triangle or diamond basis truncation (Prather: triangle)
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Common Properties of Test Cases

ρ constant
2-D unit square, doubly periodic
Cartesian mesh, ∆x = ∆y
CFL = 0.8
CDG(p) used tensor-product Legendre polynomials with triangle
truncation
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Solid-Body Rotation of a Gaussian Bump
Gaussian bump rotates about center of domain.

t = 0 and t = 1
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Errors for Solid-Body Rotation of a Gaussian Bump
After 1 rotation

In this case, each
cell’s Lagrangian
pre-image is a
polygon.

10 100
#Cells per dimension

10-8

10-7
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CDG vs. RKDG (RKDG using RK4 in time)
CDG(3) CFL limit is 7 times that of RKDG(3)

10 100
#Cells per dimension

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1
L2 (T

ex
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CDG(3), CFL = 0.8
CDG(3), CFL = 0.8 / 7
RKDG(3), CFL = 0.8 / 7
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Deformation of a Gaussian Bump
Stream function: ψ(x , y , t) = cos(πt/2) sin2(πx) sin2(πy)/π. Compute errors at t = 2.

t = 0 and t = 2 t = 1
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Sample Results at t = 1
32× 32 Mesh, exact Tmax = 1. Both methods used the same ∆t (CFL = 0.8)

CDG(1), Tmax = 0.7997 CDG(3), Tmax = 1.0170
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Sample Results at t = 2
32× 32 Mesh, exact Tmax = 1. Approximately 4 cells across initial Gaussian.

CDG(1), Tmax = 0.6080 CDG(3), Tmax = 0.9872

CDG(2), Tmax = 0.8685
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Errors for Deformation of a Gaussian Bump
Lagrangian pre-image non-polygonal⇒ CDG accuracy limited to 2nd-order. RKDG
maintains accuracy.
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Scaling of CPU Time with Number of Tracers
Results normalized by RKDG(3) time for 1 tracer
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Summary and Future Work

Summary:
At a fixed CFL, CDG(p) with incremental remap is

I stable for CFL < 1
I O(∆xp+1) accurate in space and time whenever pre-image is a

polygon; otherwise, O(∆x2)

Majority of computational work independent of number of tracers
Van Leer IV, Prather, PPB, ... ⇒ CDG(2)

Future work:
Monotonicity, positivity
Couple with fluid models
Other meshes (triangulations, Voronoi)
Other geometries (e.g., on the sphere)
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